Развитие эвм в ссср. История вычислительной техники в ссср Первая советская эвм называлась

Первый советский компьютер был создан под руководством Сергея Алексеевича Лебедева (1902—1974). Необходимость создания собственного ЭВМ в СССР была осознана несколько позже, чем в США , так что соответствующие работы начались только с осени 1948 года. Инициаторами проекта выступили ученые-ядерщики — в те годы буквально вся страна работала над атомным проектом, который курировал лично Лаврентий Берия . Первым делом советские разработчики приступили к разработке Малой электронной счетной машины (МЭСМ) .

Для разработки отечественной ЭВМ Лебедеву и его сотрудникам отвели целое крыло двухэтажного здания тайной лаборатории, которая скрывалась в лесных дубравах в местечке Феофания под Киевом . По воспоминаниям участников тех событий, работали все члены коллектива без сна и отдыха. Только к концу 1949 определилась принципиальная схема блоков машины. Далее начались чисто технические сложности — те самые, с которыми за несколько лет до этого столкнулись американцы. Но к концу 1950 года вычислительная машина была все-таки построена. После отладки, в конце 1951-го, МЭСМ прошла испытания и была принята в эксплуатацию Комиссией АН СССР во главе с академиком Мстиславом Келдышем . С 1952 года на запущенных в масштабное производство МЭСМ-ах решались важнейшие научно-технические задачи из области термоядерных процессов, космических полетов и ракетной техники, дальних линий электропередачи, механики, статистического контроля качества, сверхзвуковой авиации.

25 декабря 1951 года началась регулярная эксплуатация первой в СССР ЭВМ. В 1952—1953 годах МЭСМ была самой быстродействующей и практически единственной регулярно эксплуатируемой ЭВМ в Европе .
МЭСМ была разработана в Институте электроники Академии наук Украины под руководством академика Сергея Алексеевича Лебедева .

В это время Лебедев и его команда буквально наступала на пятки своим американским и британским коллегам.
Советские ученые, разумеется, знали о разработках западных коллег в области вычислительной техники. Знали и о компьютере ENIAC (Electronic Numerical Integrator and Computer — Электронный числовой интегратор и компьютер), который принято считать первым в мире. ENIAC был построен в 1946 году в университете штата Пенсильвания в рамках оборонного проекта Project PX (создание водородной бомбы). Однако разработки советских ученых велись совершенно независимо от западных коллег.

Еще продумывая проект своей машины, Лебедев обосновывает принципы построения ЭВМ с хранимой в памяти программой совершенно независимо от Джона фон Неймана , разработавшего концепцию запоминаемой программы, которая предполагала совместное хранение кодов и данных. Именем Неймана до сих пор называется архитектура, применяемая в современных компьютерах. Разработанные Лебедевым принципы были успешно реализованы в МЭСМ. На основе же концепции Неймана в 1952 году был построен ЕDVAC (Electronic Discrete Variable Automatic Compute r — Электронный автоматический компьютер с дискретными переменными).

Действующая модель МЭСМ была продемонстрирована специальной комиссии 4 января 1951 года. Лебедев говорил в своем докладе о возможностях, которые дадут счетные машины для повышения обороноспособности страны (например, с их помощью можно было рассчитывать упрежденную точку для перехвата вражеских ракет).
В эксплуатацию МЭСМ была введена 25 декабря 1951 года.

Основные параметры первой советской ЭВМ:

    Система счета — двоичная с фиксированной запятой перед старшим разрядом.

    Количество разрядов — 16 и еще один на знак.

    Вид запоминающего устройства — на триггерных ячейках с возможностью использования магнитного барабана.

    Емкость запоминающего устройства — 31 для чисел и 63 для команд.

    Емкость функционального устройства — 31 для чисел и 63 для команд.

    Производимые операции: сложение, вычитание, умножение, деление, сдвиг, сравнение с учетом знака, сравнение по абсолютной величине, передача управления, передача чисел с магнитного барабана, сложение команд, останов.

    Система команд — трехадресная, команды длиной 20 двоичных разрядов (из них 4 разряда — код операции).

    Арифметическое устройство — одно, универсальное, параллельного действия, на триггерных ячейках.

    Система ввода чисел — последовательная.

    Скорость работы — около 3000 операций в минуту.

    Ввод исходных данных — с перфорационных карт или посредством набора кодов на штекерном коммутаторе.

    Съем результатов — фотографирование или посредством электромеханического печатающего устройства.

    Контроль — системой программирования.

    Определение неисправностей — специальные тесты и перевод на ручную или полуавтоматическую работу.

    Площадь помещения — 60 квадратных метров.

    Количество электронных ламп-триодов около 3500, диодов 2500.

    Потребляемая мощность — 25 КВт.

Обладая низким быстродействием и малой емкостью ОЗУ, «МЭСМ» тем не менее была алгоритмически довольно развитой и, кроме того, содержала в своей структуре некоторые особенности, представляющие интерес и сейчас. Так, непосредственно связанное с арифм. устройством ОЗУ было построено на таких же триггерах, как и устройство управления и арифметическое устройство, и могло непосредственно связываться с медленно действующим ЗУ на магнитном барабане. Машина имела сменное долговременное ЗУ для хранения числовых констант и неизменных команд. Опыт, накопленный в процессе разработки машины, был использован при создании машины «БЭСМ », а сама «МЭСМ» рассматривалась в качестве действующего макета, на котором отрабатывались принципы построения «БЭСМ», Несмотря на невысокие тех. характеристики «МЭСМ», выбранные с учетом ее назначения, тех. базы того времени и условий разработки, проводилась эффективная эксплуатация машины, в процессе которой было решено большое количество научно-технических и народно-хозяйственных задач. Решение ряда задач играло важную роль для многих отраслей науки и техники начала 50-х гг. Создание и эксплуатация «МЭСМ» явились также решающим стимулом для развития программирования и разработки широкого круга вопросов вычислительной математики.

Сколько критических стрел было выпущено за последние годы по поводу состояния нашей вычислительной техники! И что была она безнадежно отсталой (при этом обязательно ввернут про "органические пороки социализма и плановой экономики"), и что сейчас развивать ее бессмысленно, потому что "мы отстали навсегда". И почти в каждом случае рассуждения будут сопровождаться выводом, что "западная техника всегда была лучше", что "русские компьютеры делать не умеют"...

Обычно, критикуя советские компьютеры, акцентируется внимание на их ненадежности, трудности в эксплуатации, малых возможностях. Да, многие программисты "со стажем" наверняка помнят те "зависающие" без конца "Е-Эс-ки" 70-80-х годов, могут рассказать о том, как выглядели "Искры", "Агаты", "Роботроны", "Электроники" на фоне только начавших появляться в Союзе IBM PC (даже и не последних моделей) в конце 80-х - начале 90-х, упомянув о том, что такое сравнение оканчивается отнюдь не в пользу отечественных компьютеров. И это так - указанные модели действительно уступали западным аналогам по своим характеристикам.

Но эти перечисленные марки компьютеров отнюдь не являлись лучшими отечественными разработками, - несмотря на то, что были наиболее распространенными. И на самом деле советская электроника не только развивалась на мировом уровне, но и иной раз опережала аналогичную западную отрасль промышленности!

Но почему же тогда сейчас мы используем исключительно иностранное "железо", а в советское время даже с трудом "добытый" отечественный компьютер казался грудой металла по сравнению с западным аналогом? Не является ли утверждение о превосходстве советской электроники голословным?

Нет, не является! Почему? Ответ - в этой статье.

Слава наших отцов

Официальной "датой рождения" советской вычислительной техники следует считать, видимо, конец 1948 года. Именно тогда в секретной лаборатории в местечке Феофания под Киевом под руководством Сергея Александровича Лебедева (в то время - директора Института электротехники АН Украины и по совместительству руководителя лаборатории Института точной механики и вычислительной техники АН СССР) начались работы по созданию Малой Электронной Счетной Машины (МЭСМ).


Лебедевым были выдвинуты, обоснованы и реализованы (независимо от Джона фон Неймана) принципы ЭВМ с хранимой в памяти программой.

В своей первой машине Лебедев реализовал основополагающие принципы построения компьютеров, такие как:
наличие арифметических устройств, памяти, устройств ввода/вывода и управления;
кодирование и хранение программы в памяти, подобно числам;
двоичная система счисления для кодирования чисел и команд;
автоматическое выполнение вычислений на основе хранимой программы;
наличие как арифметических, так и логических операций;
иерархический принцип построения памяти;
использование численных методов для реализации вычислений.
Проектирование, монтаж и отладка МЭСМ были выполнены в рекордно короткие сроки (примерно 2 года) и проведены силами всего 17 человек (12 научных сотрудников и 5 техников). Пробный пуск машины МЭСМ состоялся 6 ноября 1950 года, а регулярная эксплуатация - 25 декабря 1951 года.


Первое детище С.А.Лебедева - МЭСМ, За пультом Л.Н.Дашевский и С.Б.Погребинский, 1948-1951гг.


В 1953 году коллективом, возглавляемым С.А.Лебедевым, была создана первая большая ЭВМ - БЭСМ-1 (от Большая Электронная Счетная Машина), выпущенная в одном экземпляре. Она создавалась уже в Москве, в Институте точной механики (сокращенно - ИТМ) и Вычислительном центре АН СССР, директором которого и стал С.А.Лебедев, а собрана была на Московском заводе счетно-аналитических машин (сокращенно - САМ).


Лебедев у одной из стоек БЕСМ-1
После комплектации оперативной памяти БЭСМ-1 усовершенствованной элементной базой ее быстродействие достигло 10000 операций в секунду - на уровне лучших в США и лучшее в Европе. В 1958 году после еще одной модернизации оперативной памяти БЭСМ, уже получившая название БЭСМ-2, была подготовлена к серийному производству на одном из заводов Союза, которое и было осуществлено в количестве нескольких десятков.

Параллельно шла работа в подмосковном Специальном конструкторском бюро № 245, которым руководил М.А.Лесечко, основанном также в декабре 1948 года приказом И.В.Сталина. В 1950-1953 гг. коллектив этого конструкторского бюро, но уже под руководством Базилевского Ю.Я. разработал цифровую вычислительную машину общего назначения "Стрела" с быстродействием в 2 тысячи операций в секунду. Эта машина выпускалась до 1956 года, а всего было сделано 7 экземпляров. Таким образом, "Стрела" была первой промышленной ЭВМ, - МЭСМ, БЭСМ существовали в то время всего в одном экземпляре.

ЭВМ "Стрела".
Вообще, конец 1948 года был крайне продуктивным временем для создателей первых советских компьютеров. Несмотря на то, что обе упомянутые выше ЭВМ были одними из лучших в мире, опять-таки параллельно с ними развивалась еще одна ветвь советского компьютеростроения - М-1, "Автоматическая цифровая вычислительная машина", которой руководил И.С.Брук.

И.С.Брук
М-1 была запущена в декабре 1951 года - одновременно с МЭСМ и почти два года была единственной в СССР действующей ЭВМ (МЭСМ территориально располагалась на Украине, под Киевом).

Однако быстродействие М-1 оказалось крайне низким - всего 20 операций в секунду, что, впрочем, не помешало решать на ней задачи ядерных исследований в институте И. В. Курчатова. Вместе с тем М-1 занимала довольно мало места - всего 9 квадратных метров (сравните со 100 кв.м. у БЭСМ-1) и потребляла значительно меньше энергии, чем детище Лебедева. М-1 стала родоначальником целого класса "малых ЭВМ", сторонником которых был ее создатель И.С.Брук. Такие машины, по мысли Брука, должны были предназначаться для небольших конструкторских бюро и научных организаций, не имеющих средств и помещений для приобретения машин типа БЭСМ.

Первая задача, решенная на М1
В скором времени М-1 была серьезно усовершенствована, и ее быстродействие достигло уровня "Стрелы" - 2 тысячи операций в секунду, в то же время размеры и энергопотребление выросли незначительно. Новая машина получила закономерное название М-2 и введена в эксплуатацию в 1953 году. По соотношению стоимости, размеров и производительности М-2 стала наилучшим компьютером Союза. Именно М-2 победила в первом международном шахматном турнире между компьютерами.

В результате в 1953 году серьезные вычислительные задачи для нужд обороны страны, науки и народного хозяйства можно было решать на трех типах вычислительных машин - БЭСМ, "Стрела" и М-2. Все эти ЭВМ - это вычислительная техника первого поколения. Элементная база - электронные лампы - определяла их большие габариты, значительное энергопотребление, низкую надежность и, как следствие, небольшие объемы производства и узкий круг пользователей, главным образом, из мира науки. В таких машинах практически не было средств совмещения операций выполняемой программы и распараллеливания работы различных устройств; команды выполнялись одна за другой, АЛУ ("арифметико-логическое устройство", блок, непосредственно выполняющий преобразования данных) простаивало в процессе обмена данными с внешними устройствами, набор которых был очень ограниченным. Объем оперативной памяти БЭСМ-2, например, составлял 2048 39-разрядных слов, в качестве внешней памяти использовались магнитные барабаны и накопители на магнитной ленте.

Сетунь - первая и единственная в мире троичная ЭВМ. МГУ. СССР.
Завод-изготовитель: Казанский завод математических машин Минрадиопрома СССР. Изготовитель логических элементов - Астраханский завод электронной аппаратуры и электронных приборов Минрадиопрома СССР. Изготовитель магнитных барабанов - Пензенский завод ЭВМ Минрадиопрома СССР. Изготовитель печатающего устройства - Московский завод пишущих машин Минприборпрома СССР.
Год окончания разработки: 1959.
Год начала выпуска: 1961.
Год прекращения выпуска: 1965.
Число выпущенных машин: 50.


В наше время «Сетунь» не имеет аналогов, но исторически сложилось, что развитие информатики ушло в русло двоичной логики.

На Западе дело в то время обстояло не слишком лучше. Вот пример из воспоминаний академика Н.Н.Моисеева, ознакомившегося с опытом своих коллег из США: "Я увидел, что в технике мы практически не проигрываем: те же самые ламповые вычислительные монстры, те же бесконечные сбои, те же маги-инженеры в белых халатах, которые исправляют поломки, и мудрые математики, которые пытаются выйти из трудных положений." Напомним, что в 1953 г. в США был выпущен компьютер IBM 701 с быстродействием до 15 тысяч операций в секунду, построенный на электронно-вакуумных лампах, бывший наиболее производительным в мире.




IBM 701.
Но более производительной была следующая разработка Лебедева - ЭВМ М-20, серийный выпуск которой начался в 1959 году.

Число 20 в названии означает быстродействие - 20 тысяч операций в секунду, объем оперативной памяти в два раза превышал ОП БЭСМ, предусматривалось также некоторое совмещение выполняемых команд. В то время это была одна из наиболее мощных и надежных машин в мире, и на ней решалось немало важнейших теоретических и прикладных задач науки и техники того времени. В машине М20 были реализованы возможности написания программ в мнемокодах. Это значительно расширило круг специалистов, которые смогли воспользоваться преимуществами вычислительной техники. По иронии судьбы компьютеров М-20 было выпущено ровно 20 штук.


ЭВМ первого поколения выпускались в СССР довольно долго. Даже в 1964 году в Пензе еще продолжала производиться ЭВМ "Урал-4", служившая для экономических расчетов.


"Урал-1".
Победной поступью.

В 1948 году в США был изобретен полупроводниковый транзистор, который стал использоваться в качестве элементной базы ЭВМ. Это позволило разработать ЭВМ с существенно меньших габаритов, энергопотребления, при существенно более высокой (по сравнению с ламповыми компьютерами) надежности и производительности. Чрезвычайно актуальной стала задача автоматизации программирования, так как разрыв между временем на разработку программ и временем собственно расчета увеличивался.

Второй этап развития вычислительной техники конца 50-х - начала 60-х годов характеризуется созданием развитых языков программирования (Алгол, Фортран, Кобол) и освоением процесса автоматизации управления потоком задач с помощью самой ЭВМ, то есть разработкой операционных систем. Первые ОС автоматизировали работу пользователя по выполнению задания, а затем были созданы средства ввода нескольких заданий сразу (пакета заданий) и распределения между ними вычислительных ресурсов. Появился мультипрограммный режим обработки данных. Наиболее характерные черты этих ЭВМ, обычно называемых "ЭВМ второго поколения":
совмещение операций ввода/вывода с вычислениями в центральном процессоре;
увеличение объема оперативной и внешней памяти;
использование алфавитно-цифровых устройств для ввода/вывода данных;
"закрытый" режим для пользователей: программист уже не допускался в машинный зал, а сдавал программу на алгоритмическом языке (языке высокого уровня) оператору для ее дальнейшего пропуска на машине.

В конце 50-х годов в СССР было также налажено серийное производство транзисторов.


Отечественные транзисторы (1956 г).
Это позволило приступить к созданию ЭВМ второго поколения с большей производительностью, но меньшими занимаемой площадью и энергопотреблением. Развитие вычислительной техники в Союзе пошло едва ли не "взрывными" темпами: в короткий срок число различных моделей ЭВМ, пущенных в разработку, стало исчисляться десятками: это и М-220 - наследница лебедевской М-20, и "Минск-2" с последующими версиями, и ереванская "Наири", и множество ЭВМ военного назначения - М-40 с быстродействием 40 тысяч операций в секунду и М-50 (еще имевшие в себе ламповые компоненты). Именно благодаря последним в 1961 году удалось создать полностью работоспособную систему противоракетной обороны (во время испытаний неоднократно удалось сбить реальные баллистические ракеты прямым попаданием в боеголовку обьемом в половину кубического метра). Но в первую очередь хотелось бы упомянуть серию "БЭСМ", разрабатываемую коллективом разработчиков ИТМ и ВТ АН СССР под общим руководством С.А.Лебедева, вершиной труда которых стала ЭВМ БЭСМ-6 созданная в 1967 году. Это была первая советская ЭВМ, достигшая быстродействия в 1 миллион операций в секунду (показатель, превзойденный отечественными ЭВМ последующих выпусков только в начале 80-х годов при значительно более низкой, чем у БЭСМ-6, надежности в эксплуатации).


БЭСМ-6.
Кроме высокого быстродействия (лучший показатель в Европе и один из лучших в мире), структурная организация БЭСМ-6 отличалась целым рядом особенностей, революционных для своего времени и предвосхитивших архитектурные особенности ЭВМ следующего поколения (элементную базу которых составляли интегральные схемы). Так, впервые в отечественной практике и полностью независимо от зарубежных ЭВМ был широко использован принцип совмещения выполнения команд (до 14 машинных команд могли одновременно находиться в процессоре на разных стадиях выполнения). Этот принцип, названный главным конструктором БЭСМ-6 академиком С.А.Лебедевым принципом "водопровода", стал впоследствии широко использоваться для повышения производительности универсальных ЭВМ, получив в современной терминологии название "конвейера команд".

БЭСМ-6 выпускалась серийно на московском заводе САМ с 1968 по 1987 год (всего было выпущено 355 машин) - своего рода рекорд! Последняя БЭСМ-6 была демонтирована уже в наши дни - в 1995 году на московском вертолетном заводе Миля. БЭСМ-6 были оснащены крупнейшие академические (например, Вычислительный Центр АН СССР, Обьединенный Институт Ядерных Исследований) и отраслевые (Центральный Институт Авиационного Машиностроения - ЦИАМ) научно-исследовательские институты, заводы и конструкторские бюро.


Интересна в этой связи статья куратора Музея вычислительной техники в Великобритании Дорона Свейда о том, как он покупал в Новосибирске одну из последних работающих БЭСМ-6. Заголовок статьи говорит сам за себя: "Российская серия суперкомпьютеров БЭСМ, разрабатывавшаяся более чем 40 лет тому назад, может свидетельствовать о лжи Соединенных Штатов, объявлявших технологическое превосходство в течение лет холодной войны". Полный ее текст (на ангийском языке) доступен по адресу http://inc.com/incmagazine/ archiv...

Информация для специалистов

Работа модулей оперативной памяти, устройства управления и арифметико-логического устройства в БЭСМ-6 осуществлялась параллельно и асинхронно, благодаря наличию буферных устройств промежуточного хранения команд и данных. Для ускорения конвейерного выполнения команд в устройстве управления были предусмотрены отдельная регистровая память хранения индексов, отдельный модуль адресной арифметики, обеспечивающий быструю модификацию адресов с помощью индекс-регистров, включая режим стекового обращения.

Ассоциативная память на быстрых регистрах (типа cache) позволяла автоматически сохранять в ней наиболее часто используемые операнды и тем самым сократить число обращений к оперативной памяти. "Расслоение" оперативной памяти обеспечивало возможность одновременного обращения к разным ее модулям из разных устройств машины. Механизмы прерывания, защиты памяти, преобразования виртуальных адресов в физические и привилегированный режим работы для ОС позволили использовать БЭСМ-6 в мультипрограммном режиме и режиме разделения времени. В арифметико-логическом устройстве были реализованы ускоренные алгоритмы умножения и деления (умножение на четыре цифры множителя, вычисление четырех цифр частного за один такт синхронизации), а также сумматор без цепей сквозного переноса, представляющий результат операции в виде двухрядного кода (поразрядных сумм и переносов) и оперирующий с входным трехрядным кодом (новый операнд и двухрядный результат предыдущей операции).

ЭВМ БЭСМ-6 имела оперативную память на ферритовых сердечниках - 32 Кб 50-разрядных слов, объем оперативной памяти увеличивался при последующих модификациях до 128 Кб.

Обмен данными с внешней памятью на магнитных барабанах (в дальнейшем и на магнитных дисках) и магнитных лентах осуществлялся параллельно по семи высокоскоростным каналам (прообраз будущих селекторных каналов). Работа с остальными периферийными устройствами (поэлементный ввод/вывод данных) осуществлялась программами-драйверами операционной системы при возникновении соответствующих прерываний от устройств.

Технико-эксплуатационные характеристики:
Среднее быстродействие - до 1 млн. одноадресных команд/с
Длина слова - 48 двоичных разрядов и два контрольных разряда (четность всего слова должна была быть "нечет". Таким образом, можно было отличать команды от данных - у одних четность полуслов была "чет-нечет", а у других - "нечет-чет". Переход на данные или затирание кода ловилось элементарно, как только происходила попытка выполнить слово с данными)
Представление чисел - с плавающей запятой
Рабочая частота - 10 МГц
Занимаемая площадь - 150-200 кв. м
Потребляемая мощность от сети 220 В/50Гц - 30 КВт (без системы воздушного охлаждения)

Использование этих элементов в сочетании с оригинальными структурными решениями позволило обеспечить уровень производительности до 1 млн. операций в секудну при работе в 48-разрядном режиме с плавающей запятой, что является рекордным по отношению к сравнительно небольшому количеству полупроводниковых элементов и их быстродействию (около 60 тыс. транзисторов и 180 тыс. диодов и частоте 10 МГц).

Архитектура БЭСМ-6 характеризуется оптимальным набором арифметических и логических операций, быстрой модификацией адресов с помощью индекс-регистров (включая режим стекового обращения), механизмом расширения кода операций (экстракоды).

При создании БЭСМ-6 были заложены основные принципы системы автоматизации проектирования ЭВМ (САПР). Компактная запись схем машины формулами булевой алгебры явилась основой ее эксплуатационной и наладочной документации. Документация для монтажа выдавалась на завод в виде таблиц, полученных на инструментальной ЭВМ.

Создателями БЭСМ-6 были В.А.Мельников, Л.Н.Королев, В.С.Петров, Л.А.Теплицкий - руководители; А.А.Соколов, В.Н.Лаут, М.В.Тяпкин, В.Л.Ли, Л.А.Зак, В.И.Смирнов, А.С.Федоров, О.К.Щербаков, А.В.Аваев, В.Я.Алексеев, О.А.Большаков, В.Ф.Жиров, В.А.Жуковский, Ю.И.Митропольский, Ю.Н.Знаменский, В.С.Чехлов, общее руководство осуществлял С.А.Лебедев.

В 1966 году над Москвой была развернута система противоракетной обороны на базе созданной группами С.А.Лебедева и его коллеги В.С.Бурцева ЭВМ 5Э92б с производительностью 500 тысяч операций в секунду, просуществовавшая до настоящего времени (в 2002 году должна быть демонтирована в связи с сокращением РВСН).


Была также создана материальная база для развертывания ПРО над всей территорией Советского Союза, однако впоследствии согласно условиям договора ПРО-1 работы в этом направлении были свернуты. Группа В.С.Бурцева приняла активное участие в разработке легендарного противосамолетного зенитного комплекса С-300, создав в 1968 году для нее ЭВМ 5Э26, отличавшуюся малыми размерами (2 кубических метра) и тщательнейшим аппаратным контролем, отслеживавшим любую неверную информацию. Производительность ЭВМ 5Э26 была равна аналогичной у БЭСМ-6 - 1 миллион операций в секунду.

5Э261 - первая в СССР мобильная многопроцессорная высокопроизводительная управляющая система.
Предательство

Вероятно, самым звездным периодом в истории советской вычислительной техники была середина шестидесятых годов. В СССР тогда действовало множество творческих коллективов. Институты С.А.Лебедева, И.С.Брука, В.М.Глушкова - только крупнейшие из них. Иногда они конкурировали, иногда дополняли друг друга. Одновременно выпускалось множество различных типов машин, чаще всего несовместимых друг с другом (разве что за исключением машин, разработанных в одном и том же институте), самого разнообразного назначения. Все они были спроектированы и сделаны на мировом уровне и не уступали своим западным конкурентам.

Многообразие выпускавшихся ЭВМ и их несовместимость друг с другом на программном и аппаратном уровнях не удовлетворяло их создателей. Необходимо было навести мало-мальский порядок во всем множестве производимых компьютеров, например, взяв какой-либо из них за некий стандарт. Но...

В конце 60-х руководством страны было принято решение, имевшее, как показал ход дальнейших событий, катастрофические последствия: о замене всех разнокалиберных отечественных разработок среднего класса (их насчитывалось с полдесятка - "Мински", "Уралы", разные варианты архитектуры М-20 и пр.) - на Единое Семейство ЭВМ на базе архитектуры IBM 360, - американского аналога. На уровне Минприбора не так громко было принято аналогичное решение в отношении мини-ЭВМ. Потом, во второй половине 70-х годов, в качестве генеральной линии для мини- и микро-ЭВМ была утверждена архитектура PDP-11 также иностранной фирмы DEC. В результате производители отечественных ЭВМ были принуждены копировать устаревшие образцы IBM-вской вычислительной техники. Это было начало конца.


Вот оценка члена-корреспондента РАН Бориса Арташесовича Бабаяна (полный текст статьи доступен с адреса znanie-sila.ru/ online/issu...):

"Потом наступил второй период, когда был организован ВНИИЦЭВТ. Я считаю, что это критический этап развития отечественной вычислительной техники. Были расформированы все творческие коллективы, закрыты конкурентные разработки и принято решение всех загнать в одно "стойло". Отныне все должны были копировать американскую технику, причем отнюдь не самую совершенную. Гигантский коллектив ВНИИЦЭВТ копировал IBM, а коллектив ИНЭУМ - DEC."

Никоим образом не стоит думать, что коллективы разработчиков ЕС ЭВМ выполняли свою работу плохо. Напротив, создавая вполне работоспособные компьютеры (хоть и не очень надежные и мощные), подобные западным аналогам, они справились с этой задачей блестяще, - учитывая то, что производственная база в СССР отставала от западной. Ошибочной была именно ориентация всей отрасли на "подражание Западу", а не на развитие оригинальных технологий.

К сожалению, сейчас неизвестно, кто конкретно в руководстве страны принял преступное решение о сворачивании оригинальных отечественных разработок и развитии электроники в направлении копирования западных аналогов. Обьективных причин для такого решения не было никаких.

Так или иначе, но с начала 70-х годов разработка малых и средних средств вычислительной техники в СССР начала деградировать. Вместо дальнейшего развития проработанных и испытанных концепций компьютеростроения огромные силы институтов вычислительной техники страны стали заниматься "тупым", да к тому же еще и полузаконным копированием западных компьютеров. Впрочем, законным оно быть не могло - шла "холодная война", и экспорт современных технологий "компьютеростроения" в СССР в большинстве западных стран был попросту законодательно запрещен.

Вот еще одно свидетельство Б.А.Бабаяна:

"Расчет был на то, что можно будет наворовать много матобеспечения - и наступит расцвет вычислительной техники. Этого, конечно, не произошло. Потому что после того, как все были согнаны в одно место, творчество кончилось. Образно говоря, мозги начали сохнуть от совершенно нетворческой работы. Нужно было просто угадать, как сделаны западные, в действительности устаревшие, вычислительные машины. Передовой уровень известен не был, передовыми разработками не занимались, была надежда на то, что хлынет матобеспечение… Вскоре стало ясно, что матобеспечение не хлынуло, уворованные куски не подходили друг к другу, программы не работали. Все приходилось переписывать, а то, что доставали, было древнее, плохо работало. Это был оглушительный провал. Машины, которые делались в этот период, были хуже, чем машины, разрабатывавшиеся до организации ВНИИЦЭВТа..."

Cамое главное - путь копирования заокеанских решений оказался гораздо сложнее, чем это предполагалось ранее. Для совместимости архитектур требовалась совместимость на уровне элементной базы, а ее-то у нас и не было. В те времена отечественная электронная промышленность также вынужденно встала на путь клонирования американских компонентов, - для обеспечения возможности создания аналогов западных ЭВМ. Но это было очень непросто.

Можно было достать и скопировать топологию микросхем, узнать все параметры электронных схем. Однако это не давало ответа на главный вопрос - как их сделать. По сведениям одного из экспертов российского МЭП, работавшего в свое время генеральным директором крупного НПО, преимущество американцев всегда заключалось в огромных инвестициях в электронное машиностроение. В США были и остаются совершенно секретными не столько технологические линии производства электронных компонентов, сколько оборудование по созданию этих самых линий. Результатом такой ситуации стало то, что созданные в начале 70-х годов советские микросхемы - аналоги западных были похожи на американо-японские в функциональном плане, но не дотягивали до них по техническим параметрам. Поэтому платы, собранные по американским топологиям, но с нашими компонентами, оказывались неработоспособными. Приходилось разрабатывать собственные схемные решения.

В цитированной выше статье Свейда делается вывод: "БЭСМ-6 была, по общему мнению, последним оригинальным русским компьютером, что был спроектирован наравне со своим западным аналогом". Это не совсем верно: после БЭСМ-6 была серия "Эльбрус": первая из машин этой серии "Эльбрус-Б" была микроэлектронной копией БЭСМ-6, предоставляла возможность работать в системе команд БЭСМ-6 и использовать программное обеспечение, написанное для нее.

Однако общий смысл вывода верен: из-за приказа некомпетентных или сознательно вредящих деятелей правящей верхушки Советского Союза того времени советской вычислительной технике был закрыт путь на вершину мирового Олимпа. Которой она вполне могла достичь - научный, творческий и материальный потенциал вполне позволяли это сделать.

Вот, к примеру, немного из личных впечатлений одного из авторов статьи:

"В период моей работы в ЦИАМ (1983 - 1986 гг.) уже происходил переход смежников - заводов и КБ авиапрома - на ЕС-овскую технику. В связи с этим руководство института начало заставлять руководителей подразделений переходить на только что установленную в институте ЕС-1060 - клон западного IBM PC. Разработчики устроили саботаж этого решения, пассивный, а кое-кто и активный, предпочитая использовать старую добрую БЭСМ-6 пятнадцатилетней давности. Дело в том, что работать на ЕС-1060 в дневное время было практически невозможно - постоянные "зависы", скорость прохождения заданий крайне медленная; в то же время любое зависание БЭСМ-6 рассматривалось как ЧП, настолько они были редки."

Однако отнюдь не все оригинальные отечественные разработки были свернуты. Как уже говорилось, коллектив В.С.Бурцева продолжал работу над серией ЭВМ "Эльбрус", и в 1980 году ЭВМ "Эльбрус-1" с быстродействием до 15 миллионов операций в секунду был запущен в серийное производство. Симметричная многопроцессорная архитектура с общей памятью, реализация защищенного программирования с аппаратными типами данных, суперскалярность процессорной обработки, единая операционная система для многопроцессорных комплексов - все эти возможности, реализованные в серии "Эльбрус", появились раньше, чем на Западе. В 1985 году следующая модель этой серии, "Эльбрус-2", выполнял уже 125 миллионов операций в секунду. "Эльбрусы" работали в целом ряде важных систем, связанных с обработкой радиолокационной информации, на них считали в номерных Арзамасе и Челябинске, а многие компьютеры этой модели до сих пор обеспечивают функционирование систем противоракетной обороны и космических войск.

Весьма интересной особенностью "Эльбрусов" являлся тот факт, что системное программное обеспечение для них создавалось на языке высокого уровня - Эль-76, а не традиционном ассемблере. Перед исполнением код на языке Эль-76 переводился в машинные команды с помощью аппаратного, а не программного обеспечения.

С 1990 года выпускался также "Эльбрус 3-1", отличавшийся модульностью конструкции и предназначавшийся для решения больших научных и экономических задач, в том числе моделирования физических процессов. Его быстродействие достигло 500 миллионов операций в секунду (на некоторых командах). Всего было произведено 4 экземпляра этой машины.

С 1975 года группой И.В.Прангишвили и В.В.Резанова в научно-производственном обьединении "Импульс" начал разрабатываться вычислительный комплекс ПС-2000 с быстродействием в 200 миллионов операций в секунду, пущенный в производство в 1980 году и применявшийся в основном для обработки геофизических данных, - поиска новых месторождений полезных ископаемых. В этом комплексе максимально использовались возможности параллельного исполнения команд программы, что достигалось хитроумно спроектированной архитектурой.

Большие советские компьютеры, вроде того же ПС-2000, во многом даже превосходили своих зарубежных конкурентов, но стоили гораздо дешевле - так, на разработку ПС-2000 было затрачено всего 10 миллионов рублей (а его использование позволило получить прибыль в 200 миллионов рублей). Однако их сферой применения были "крупномасштабные" задачи - та же противоракетная оборона или обработка космических данных. Развитие средних и малых ЭВМ в Союзе предательством кремлевской верхушки было заторможено всерьез и надолго. И именно поэтому тот прибор, что стоит у вас на столе и о котором рассказывается в нашем журнале, сделан в Юго-Восточной Азии, а не в России.

Катастрофа

С 1991 года для российской науки настали тяжелые времена. Новая власть России взяла курс на уничтожение российской науки и оригинальных технологий. Прекратилось финансирование подавляющего большинства научных проектов, вследствие разрушения Союза прервались взаимосвязи заводов-производителей ЭВМ, оказавшихся в разных государствах, и эффективное производство стало невозможным. Многие разработчики отечественной вычислительной техники были вынуждены работать не по специальности, теряя квалификацию и время. Единственный экземпляр разработанного еще в советское время компьютера "Эльбрус-3", в два раза более быстрого, чем самая производительная американская супермашина того времени Cray Y-MP, в 1994 году был разобран и пущен под пресс.



"Эльбрус-3".
Некоторые их создателей советских компьютеров уехали за границу. Так, в настоящее время ведущим разработчиком микропроцессоров фирмы Intel является Владимир Пентковский, получивший образование в СССР и работавший в ИТМиВТ - Институте Точной Механики и Вычислительной Техники имени С.А.Лебедева. Пентковский принимал участие в разработке упоминавшихся выше компьютеров "Эльбрус-1" и "Эльбрус-2", а затем возглавил разработку процессора для "Эльбруса-3" - Эль-90. Вследствие целенаправленной политики уничтожения российской науки, ведущейся правящими кругами РФ под влиянием Запада, финансирование проекта "Эльбрус" прекратилось, и Владимир Пентковский был вынужден эмигрировать в США и устроиться на работу в корпорацию Intel. Вскоре он стал ведущим инженером корпорации и под его руководством в 1993 году в Intel разработали процессор Pentium, по слухам, названный так именно в честь Пентковского.

Пентковский воплощал в Intel"овских процессорах те советские ноу-хау, которые знал сам, многое додумывая в процессе разработки, и к 1995 году фирма Intel выпустила более совершенный процессор Pentium Pro, который уже вплотную приблизился по своим возможностям к российскому микропроцессору 1990 года Эль-90, хоть и не догнал его. В настоящее время Пентковский разрабатывает следующие поколения процессоров Intel. Так что процессор, на котором, возможно, работает ваш компьютер, сделан именно нашим соотечественником и мог бы быть российского производства, если бы не события после 1991 года.

Многие НИИ переключились на создание крупных вычислительных систем на основе импортных компонентов. Так, в НИИ “Квант” под руководством В.К.Левина ведется раззработка вычислительных системы МВС-100 и МВС-1000, основанных на процессорах Alpha 21164 (производства DEC-Compaq). Однако приобретение такого оборудования затруднено действующим эмбарго на экспорт в Россию высоких технологий, возможность же применения подобных комплексов в оборонных системах крайне сомнительна, - никто не знает, сколько в них можно найти "жучков", активирующихся по сигналу и выводящих систему из строя.

На рынке же персональных ЭВМ отечественные компьютеры отсутствуют полностью. Максимум, на что идут российские разработчики - это сборка компьютеров из комплектующих и создание отдельных устройств, например, материнских плат, - опять-таки из готовых компонентов, при этом размещая заказы на производство на заводах Юго-Восточной Азии. Однако и таких разработок весьма мало (можно назвать фирмы "Аквариус", "Формоза"). Развитие же линии "ЕС" практически остановилось, - зачем создавать свои аналоги, когда проще и дешевле купить оригиналы?

1948 - 1958 гг., первое поколение ЭВМ
1947-1948 г. - начало работ по созданию в Институте электроники Академии наук Украины под руководством академика Сергея Алексеевича Лебедева первой отечественной первая универсальной ламповой ЭВМ - МЭСМ (малой электронной счетной машины).

1948 г. - И. С. Брука получил диплом на изобретение ЭВМ и представил проект создания такой машины, названной М-1. В декабре И. С. Брук и Б. И. Рамеев получили авторское свидетельство на изобретение "Автоматическая цифровая электронная машина". Из-за организационных трудностей работы затянулись.

1950 г. - вступает в действие первая в СССР вычислительная электронная цифровая машина МЭСМ, самая быстродействующая тогда в Европе, а в 1951 году она официально вводится в эксплуатацию.

1952 г. - началась практическая эксплуатация ЭВМ М-1, разработанной под руководством И. С. Брук. За М-1 последовали М-2. Ее разработку выполнила группа выпускников МЭИ, возглавляемая М.А.Карцевым. Затем была выпушена машина М-3. ЭВМ М-3 занимает особое место в развитии вычислительной техники. С некоторыми модификациями она была повторена в Ереване, Минске, а также за рубежом - в Китае и Венгрии, где послужила основой для развития математического машиностроения.

1953 г. - в Академии наук СССР (Москва), вводится в эксплуатацию БЭСМ (большая электронная счетная вычислительная машина), разработанная в Институте точной механики и вычислительной техники АН СССР. под руководством С.А.Лебедева. БЭСМ относится к классу цифровых вычислительных машин общего назначения, ориентированных на решение сложных задач науки и техники.

1953 г. в Москве, в СКБ Министерства машиностроения и приборостроения под руководством Ю. Я. Базилевского и Б. И. Рамеева закончена разработка серийной ЭВМ "Стрела" общего назначения.

1954 г. - начался серийный выпуск ЭВМ "Стрела". Серия оказалась очень маленькой: всего за четыре года было выпущено семь машин. Тем не менее 1954 г. - это год становления отечественной индустрии ЭВМ.

1955 г. - институт точной механики и вычислительный техники АН СССР ввел усовершенствования в Большую ЭВМ "БЭСМ", повысившие её быстродействие до 8000 операций в секунду.

1956 г. - в СССР Госкомиссии представлена ЭВМ М-3, разработанная инициативной группой (И. С. Брук, Н.Я.Матюхин, В.В.Белынский, Г.П.Лопато, Б.М.Каган, В.М.Долкарт, Б.Б.Мелик-Шахназаров).

1956 г. - разработана ЭВМ БЭСМ-2. Руководитель разработки - С.А.Лебедева

1957 г. - завершена разработка одной из наиболее совершенных чисто релейных вычислительных машин РВМ-1. Машина сконструирована и построена под руководством советского инженера И. И. Бессонова (начало постройки относится к 1954 году).

1957 г. - в Пензе под руководством Б. И. Рамеева создана одноадресная ламповая ЭВМ "Урал-1"общего назначения, ориентированных на решение инженерно-технических и планово-экономических задач. Она положилая начало целому семейству малых ЭВМ "Урал".

1958 г. - введена в эксплуатацию ЭВМ M-20 (Казань) Разработка выполнена ИТМ и ВТ совместно с СКБ-245. Руководитель: С.А.Лебедев, заместитель главного конструктора М. К. Сулим, М. Р. Шура-Бура. М-20 - цифровая электронная вычислительная машина общего назначения, ориентированная на решение сложных математических задач. Она послужила исходной моделью семейства совместимых вычислительных машин М-220 и М-222.

1958 г. - начало выпуска в Ульяновске БЭСМ-2 (С.А.Лебедев, В.А.Мельников).

1958 г. - в институте кибернетики АН УССР разработана электронная цифровая вычислительная машина “КИЕВ”, предназначенная для решения широкого круга научных и инженерных задач.

1958 г. - в Ереване под руководством Ф.Т. Саркисяна (Б.Б.Мелик-Шахназаров) создана ЭВМ "Раздан".


Универсальная цифровая вычислительная машина "Раздан-2"
1958 г. - под руководством Н.П. Брусенцова в вычислительном центре Московского университета была создана и запущена в производство первая и единственная в мире троичная ЭВМ "Сетунь". “Сетунь” - малая цифровая вычислительная машина, предназначенная для решения научно-технических и экономических задач средней сложности. Серийно выпускалась 1962-1964.

1959 г. - созданы опытные образцы ЭВМ М-40, М-50 для систем противоракетной обороны (ПРО). Разработчики - С.А.Лебедев и В.С.Бурцев (Ленинская премия 1966 г. за специализированный автоматизированный комплекс обработки информации для системы ПРО на базе этих ЭВМ).

1959 г. - начало выпуска в Минске ЭВМ "Минск-1" применялась в основном для решения инженерных, научных и конструкторских задач математического и логического характера. (Г.П.Лопато).

1959 г. - в СССР была введена в эксплуатацию первая ламповая специализированная стационарная ЭВМ СПЕКТР-4 предназначенная для наведения истребителей-перехватчиков.

1959 г. - под руководством Я.А.Хетагурова (ЦМНИИ-1) создана первая в СССР мобильная полупроводниковая ЭВМ "КУРС" для обработки радиолокационной информации.

1959 г. - универсальная ЭВМ «Киев»


1960 г. - в СССР разработана первая полупроводниковая управляющая машина "Днепр" (В.М.Глушков, Б.Н. Малиновский).


1960 г. - создана первая микропрограммная специализированная ЭВМ "Тетива" для системы ПВО. Производство в Минске. Главный конструктор Н.Я.Матюхин.

1961 г. - начат серийный выпуск ЦВМ “Раздан-2”, предназначена для решения научно-технических и инженерных задач, малой производительности (скорость вычислений - до 5 тысяч операций в 1 секунд).

1961 г. - в СССР создана первая в стране серийная универсальная полупроводниковая управляющая ЭВМ широкого назначения "Днепр-1" (В.М.Глушков, Б.Н. Малиновский). Выпускалась на протяжении 10 лет.

1961 г. - начало выпуска "Урал-4" (Пенза). Руководитель работ - Б.И.Рамеев.

1962 г. - в ИТМиВТ выпущена ЭВМ БЭСМ-4.

1962 г. - в Северодонецком научно-исследовательском институте управляющих вычислительных машин создана “МППИ-1” - машина первичной переработки информации - информационно-вычислительная машина. Применялась “МППИ-1” в химической, нефтеперерабатывающей, металлургической и других отраслях промышленности.

1962 г. - создан опытный образец ЭВМ "Восток" (А.Н.Мямлин).

1962 г. - в Институте кибернетики АН УССР разработано семейство малых цифровых электронных вычислительных машин “Промiнь”, предназначенных для автоматизации инженерных расчетов средней сложности.


1962 г. - разработана первая в Украине ЭВМ с асинхронным управлением "Киев" (В.М.Глушков, Е.Л.Ющенко, Л.Н.Дашевский). Запуск ее в ОИЯИ (Дубна).

1962 г. - начало выпуска ЭВМ "Минск-2" с использованием импульсно потенциальной элементной базы и введением представления данных в виде двоично-десятичных чисел и алфавитно-цифровых слов (Минск) (С 1965 г. – "Минск-22"). В.В.Пржиялковский.

1963 г. - начало серийного производства малой ЭВМ для инженерных расчетов "Промiнь" на Северодонецком заводе вычислительных машин. В ней использовалось ступенчатое микропрограммное управление (С.Б.Погребинский, В.Д.Лосев).

1963 г. - начало выпуска ЭВМ "Минск-32" (Минск) с внешней памятью на сменных магнитных дисках (В.Я.Пыхтин).


1963 г. - создан многомашинный вычислительный комплекс "Минск-222" (Г.П.Лопато).

1964 г. - в Ереванском научно-исследовательском институте математических машин разработана и запущена в производство ЭВМ с микропрограммным управлением "Наири".

1964 г. - начало выпуска ряда ЭВМ Урал; Урал-11, Урал-14, Урал-16 (с 1969 г.) с операциями над словами переменной длины и структурной адресацией (Б.И.Рамеев, В.И.Бурков, А.Н.Невский, Г.С.Горшков, А.С.Горшков, В.И.Мухин).

1964 г. - начало выпуска электронная цифровая вычислительная машина общего назначения "Весна". Производство в Минске. Гавный конструктор В.С.Полин (В.К.Левин, М.Р.Шура-Бура, В.С.Штаркман, В.А.Слепушкин, Ю.А.Котов).

1965 г. - группой инженеров в Институте точной механики и вычислительной техники под руководством С.А.Лебедева была создана мощная полупроводниковая ЭВМ БЭСМ-6 ("Быстродействующая электронно-счетная машина"). БЭСМ-6 занимает особенно важное место в развитии и использовании вычислительной техники в СССР. Это первая в СССР суперЭВМ с производительностью 1 миллион оп/сек.

1965 г. - в Киеве Институте кибернетики АН УССР создана машина МИР-1. Разработчики В.М.Глушков, Ю.В.Благовещенский, А.А.Летичевский, А.А.Летинский, В.Д.Лосев, И.Н. Молчанов, С.Б. Погребинский, А.А.Стогний,. З.Л.Рабинович.

1965 г. - начало выпуска в Казани полупроводниковых ЭВМ М-220 и М-222 с производительностью до 200 тыс. оп/сек, продолжающих линию ЭВМ М-20. Предназначены для решения научно-технических, а также отдельных классов экономических задач. Главный конструктор М.К.Сулим.

1965 г. - в Ереванском научно-исследовательском институте математических машин выпущена модификация ЭВМ "Наири-М".

1965 г. - создан макет ЭВМ с системой счисления в остаточных классах (И.Я.Акушский, Д.И.Юдицкий). Технический проект ЭВМ "Украина" с развитыми системами интерпретации. В.М.Глушков, З.Л.Рабинович, А.А.Стогний.

1966 г. - завершается разработка проекта большой ЭВМ "Украина", предвосхитившего многие идеи американских больших ЭВМ 70-х годов.

1966 г. - начат серийный выпуск ЦВМ “Раздан-3”, предназначенной для решения научно-технических, планово-экономических и статистических задач.

1966 г. - для командных пунктов ПВО в СССР была создана мощная по тем временам специализированная ЭВМ ГРАНИТ (А.З.Шостак).

1967 г. - начало выпуска в Киеве заводе ВУМ управляющей ЭВМ "Днепр-2". Разработка Института кибернетики АН Украины (В.М.Глушков, А.Г.Кухарчук).

1967 г. - в Ереванском научно-исследовательском институте математических машин выпущена модификации ЭВМ "Наири-С" и "Наири-2".

1967 г. - ввод в действие электронной счетной машины БЭСМ-6 в Вычислительном центре АН СССР. Начало ее серийного производства на заводе счетно-аналитических машин (САМ) в Москве. За все время (до начала 80-х гг.) было построено около 350 БЭСМ-6.

1968 - 1973 гг., третье поколение ЭВМ
1968 г. - проект полностью параллельной вычислительной системы М-9 с производительностью порядка 10 оп/сек. В М-9 операции задавались над функциями двух переменных. М.А.Карцев.

1968 г.- начало производства ЭВМ МИР-2, созданной под руководством В.М.Глушкова в Киеве.

1969 г. - “РУТА-110” - комплекс устройств обработки, ввода, хранения, вывода, а также дистанционного сбора и выдачи алфавитно-цифровой информации, предназначенный для создания локальных систем обработки данных. Разработан СКВ вычислительных машин (г. Вильнюс).

1969 г. 5Э92Б - двухпроцессорный компьютер на дискретных полупроводниковых схемах, основной компьютер в первой системе ПРО Москвы;

1970 г. - создана многомашинная система коллективного пользования "АИСТ-0" на базе нескольких М-20 под управлением "Минск-32". Разработчики А.П.Ершов, Г.И.Кожухин, Г.П.Макаров, М.И. Нечепуренко, И.В.Поттосин.

1970 г. - в Ереванском научно-исследовательском институте математических машин выпущена модификации ЭВМ "Наири-3" и "Наири-3-1" (на интегральных гибридных микросхемах).


1971 г. - начало выпуска модели ЕС-1020 (20 тыс. оп/сек), Минск. В.В.Пржиялковский.

1973 г. - начало выпуска модели ЕС-1030 (100 тыс. оп/сек), Казань (разработка выполнена в Ереване, М. Семирджан).

1973 г. - с использованием БЭСМ-6 была создана многомашинная система с переменной структурой АС-6 для задач управления космическими полетами в СССР.

1973 г. - начало выпуска ЭВМ ЕС-1050 (Москва, Пенза). В.С.Антонов.

1973 г. - начало выпуска высокопроизводительной ЭВМ с многоформатной векторной RISC-архитектурой для систем предупреждения о ракетном нападении и общего наблюдения за космическим пространством М-10 (Загорск, М.А.Карцев).

Разумеется, не все еще потеряно. Остались и описания технологий, иной раз даже по
прошествии десяти лет превосходящих западные, и действующие образцы. К счастью, не все разработчики отечественной вычислительной техники уехали за границу или умерли. Так что шанс еще есть.

А будет ли он реализован - зависит уже от нас.

Добавление

1) Совершенно не упомянут Томск, как один из центров
- ЭВМ М-20 (Ламповая) была установлена на территории тогдашнего ЗММ (НПО "Контур") в 60-х годах и проработала до средины 70-х
- Первая ЭВМ БЭСМ-6 была установлена в корпусе НИИ ПМиМ в конце 70-х (ЕМНИП). Вторая - в ИОА. Для города такого размера, как Томск - две "Шестерки" это было невероятно круто.
- Первая ЕС-1020 была установлена в средине 70-х в СНИИГГиМС (это самый конец пр Фрунзе), потом - в ТПИ и ЕС-1022 в ТГУ.
- Первые ЭВМ серий СМ-1 и СМ-2 были установлены на "почтовом", для управления производством тоже, в конце 70-х... Кстати, они прожили более 30 лет и были демонтированы не так давно.
2) "К сожалению, сейчас неизвестно, кто конкретно в руководстве страны принял преступное решение о сворачивании оригинальных отечественных разработок" - почему - НЕИЗВЕСТНО? Очень даже хорошо - известно! Это решение было принято на совместном заседании Политбюро ЦК КПСС и СовМина СССР. Цитирую: "30 декабря 1967 года ЦК КПСС и Совет Министров СССР приняли постановление «О развитии производства средств вычислительной техники» (#1180-420). Этим указом Министерству радиопромышленности поручалось разработать комплекс информационно-вычислительных машин «Ряд» и организовать его серийное производство. Много позже гуру программирования Эдсгер Дейкстра (Edsger Dijkstra) скажет, что постановление #1180-420 стало «величайшей победой Запада в холодной войне».

3) По поводу "творческой переработки" лучших зарубежных аналогов. тут возникали забавные проблемы... Например: "Дело в том, что существующие ГОСТЫ ориентированы на метрическую систему, а среди компьютерных комплектующих доминирует дюймовый масштаб. Эта проблема касается не только корпусов и плат, но и микросхем, включая расстояние между контактами. В результате инженерам даже при наличии образцов приходилось заново проектировать свои изделия." Проще говоря - 1 дюйм это НЕ точно 2.5 см... А с "хвостиком"... На м/с серий к155, с 14 ногами это не приводило к особым проблемам, но вот когда пошли БИСы с десятками и сотнями ног, в процессе "творческой переработки" приходилось попотеть!
4) Жаль, что автор не подчеркнул уникальную разработку Глушкова - "Мир-2". Это действительно выдающяяся разработка, в которой язык программирования высокого уровня был реализован аппаратно. Без компиллятора..
5) И наоборот - троичная система, с котрой так любят носиться не шибко образованные в ВТ "патриоты", то же самое, что три пола в половом размножении... Интересно теоретически, что-то такое дает в перспективе, но на практике - очень сложно и ненадежно.
6) По поводу "отечественной" ЭВМ "Эльбрус"... Недаром, специалисты в области ЭВМ называли ее "ЭльБарроуз"... Была такая фирма... Основные идеи Эльбруса были цельнотянуты у Барроуза и Крея.
7) И наоборот, автором совершенно не отражена история действительно отечественной разработки системы ПС. ПС-2000 была разработана по заказу нефтяников, которые в 70-е годы имели влияние на принятие решений даже большее, чем МО. В отличии от генералов, среди них нашлись вменяемые люди, которые наплевав на постановление ЦК КПСС профинансировали эту интереснейшую разработку. Для неспециалистов, могу пояснить так - это была попытка сделать истребитель на паровом двигателе. Фокус в том. что она удалась! ЭВМ ПС-200 работали в полутора сотнях геофизических экспедиций и честно обрабатывали данные сейсморазведки. Немного похуже, чем Cyber-174, но в десятки раз дешевле... Последней разработкой этой линии была ЭВМ ПС-3000. Я лично участвовал в приемо-сдаточных испытаниях экземпляра № 2. По тем временам - это было нечто удивительное! Хотя вся элементная база была "цельнотянутой" и устаревшей, благодаря оригинальным конструкторским решениям эта ЭВМ могла конкурировать с западными моделями. Но это уже был конец 80-х и правительство СССР волновали совсем другие проблемы... ПС-3000 был разобран на металолом спустя несколько лет.

От РП: человеком, продавившим преступное решение в Политбюро был А.Н. Косыгин - председатель СовМина СССР, тесть некоего Гвишини, через институт которого шли неформальные контакты с Западом и готовилась Перестройка. «Величайшая победаЗапада в холодной войне», почти наверняка, пришла оттуда. За Косыгиным и "крылом конвергенции", проведшим операцию "Перестройка" стояли переродившиеся номенклатурные круги партийно-советского аппарата и спецслужб, в первую очередь - внешней разведки. Окончательный удар по советским ЭВМ и Автоматизированным Системам Управления нанёс Горбачёв.

Операция по уничтожению сети советских ЭВМ для управления экономикой по предложению Глушкова проводилась под прикрытием экспертов из ЦК и активной помощи Запада, в первую очередь, спецслужб США. Косыгину и не особо грамотному, хотя и честному и сообразительному Брежневу группы референтов из ЦК и СовМина потоком шли сообщения такого типа: "В США спрос на вычислительные машины упал." В докладных записках в ЦК КПСС от экономистов, побывавших в командировках в США, в основном через контакты Гвишиани, использование вычислительной техники для управления экономикой приравнивалось к моде на абстрактную живопись, вроде как это чисто мода - капиталисты покупают ЭВМ только чтобы казаться современными". В тоже время через окружение Брежнева и ПБ альтернативная информация от Глушкова и других специалстов мирового уровня не допускалась до руководства, а контакты академиков-технократов с высшим руководством были в значительной мере блокированы. "Перестройка" уже начиналась.

Первая советская электронно-вычислительная машина была сконструирована и введена в эксплуатацию недалеко от города Киева. С появлением первого компьютера в Союзе и на территории континентальной Европы связывают имя Сергея Лебедева (1902-1974 гг.). В 1997 году ученая мировая общественность признала его пионером вычислительной техники, и в том же году Международное компьютерное общество выпустило медаль с надписью: «С.А. Лебедев - разработчик и конструктор первого компьютера в Советском Союзе. Основоположник советского компьютеростроения». Всего при непосредственном участии академика было создано 18 электронно-вычислительных машин, 15 из которых переросли в серийное производство.

Сергей Алексеевич Лебедев - основоположник вычислительной техники в СССР

В 1944-м, после назначения на должность директора Института энергетики АН УССР, академик с семьей переезжает в Киев. До создания революционной разработки остается еще долгих четыре года. Данный институт специализировался по двум направлениям: электротехническое и теплотехническое. Волевым решением директор разделяет два не совсем совместимых научных направления и возглавляет Институт электроники. Лаборатория института переезжает в предместье Киева (Феофания, бывший монастырь). Именно там и воплощается в жизнь давнишняя мечта профессора Лебедева - создать электронно-цифровую счетную машину.

Первый компьютер СССР

В 1948 году модель первого отечественного компьютера была собрана. Устройство занимало почти все пространство комнаты площадью в 60 м 2 . В конструкции было так много элементов (особенно нагревательных), что при первом запуске машины выделилось столько тепла, что пришлось даже разобрать часть кровли. Первую модель советского компьютера назвали просто - Малая Электронная Счетная Машина (МЭСМ). Она могла производить до трех тысяч счетно-вычислительных операций в минуту, что по меркам того времени было заоблачно много. В МЭСМ был применен принцип электронной ламповой системы, который уже апробирован западными коллегами («Колосс Марк 1» 1943 г., «ЭНИАК» 1946 г.).

Всего в МЭСМ было использовано порядка 6 тысяч различных электронных ламп, устройству требовалась мощность в 25 кВт. Программирование происходило за счет ввода данных с перфолент или в результате набора кодов на штекерном коммутаторе. Вывод данных производился посредством электромеханического печатающего устройства или путем фотографирования.

Параметры МЭСМ:

  • двоичная с фиксированной запятой перед старшим разрядом система счета;
  • 17 разрядов (16 плюс один на знак);
  • емкость ОЗУ: 31 для чисел и 63 для команд;
  • емкость функционального устройства: аналогичная ОЗУ;
  • трехадресная система команд;
  • производимые вычисления: четыре простейших операции (сложение, вычитание, деление, умножение), сравнение с учетом знака, сдвиг, сравнение по абсолютной величине, сложение команд, передача управления, передача чисел с магнитного барабана и пр.;
  • вид ПЗУ: триггерные ячейки с вариантом использования магнитного барабана;
  • система ввода данных: последовательная с контролем через систему программирования;
  • моноблочное универсальное арифметическое устройство параллельного действия на триггерных ячейках.

Несмотря на максимально возможную автономную работу МЭСМ, определение и устранение неполадок все же происходило вручную или посредством полуавтоматического регулирования. Во время испытаний компьютеру было предложено решить несколько задач, после чего разработчики заключили, что машина способна производить вычисления, неподвластные человеческому разуму. Публичная демонстрация возможностей малой электронной счетной машины произошла в 1951 году. С этого момента устройство считается введенным в эксплуатацию первым советским электронно-вычислительным аппаратом. Над созданием МЭСМ под руководством Лебедева работало всего 12 инженеров, 15 техников и монтажниц.

Несмотря на ряд существенных ограничений, первый компьютер, сделанный в СССР, работал в соответствии с требованиями своего времени. По этой причине машине академика Лебедева было доверено проводить расчеты по решению научно-технических и народно-хозяйственных задач. Опыт, накопленный в процессе разработки машины, был использован при создании БЭСМ, а сама МЭСМ рассматривалась в качестве действующего макета, на котором отрабатывались принципы построения большой ЭВМ. Первый «блин» академика Лебедева на пути развития программирования и разработок широкого круга вопросов вычислительной математики не оказался комом. Машину применяли как для текущих задач, так и рассматривали прототипом более усовершенствованных аппаратов.

Успех Лебедева был высоко оценен в высших эшелонах власти, и в 1952 году академик получил назначение на руководящую должность института в Москве. Малая электронная счетная машина, произведенная в единичном экземпляре, использовалась до 1957 года, после чего устройство демонтировали, разобрали на составляющие и поместили в лабораториях Политехнического института в Киеве, где части МЭСМ служили студентам в лабораторных исследованиях.

ЭВМ серии «М»

Пока академик Лебедев работал над электронно-вычислительным устройством в Киеве, в Москве образовывалась отдельная группа электротехников. Сотрудники Энергетического института имени Кржижановского Исаака Брука (электротехник) и Башира Рамеева (изобретатель) в 1948 году подают в патентное бюро заявку на регистрацию проекта собственной ЭВМ. В начале 50-х Рамеев становится руководителем отдельной лаборатории, где и предназначалось появиться этому устройству. Буквально за один год разработчики собирают первый прототип машины М-1. По всем техническим параметрам это было устройство, намного уступающее МЭСМ: всего 20 операций в секунду, тогда как машина Лебедева показывала результат в 50 операций. Неотъемлемым преимуществом М-1 были ее габариты и энергопотребление. В конструкции использовано всего 730 электрических ламп, они требовали 8 кВт, а весь аппарат занимал лишь 5 м 2 .

В 1952-м году появилась М-2, производительность которой выросла в сто раз, а число ламп увеличилось лишь вдвое. Этого удалось достичь за счет использования управляющих полупроводниковых диодов. Но инновации требовали больше энергии (М-2 потребляла 29 кВт), да и площадь конструкция заняла в четыре раза больше, чем предшественница (22 м 2). Счетных возможностей данного устройства вполне хватало для реализации ряда вычислительных операций, но серийное производство так и не началось.

«Малютка» ЭВМ М-2

Модель М-3 снова стала «малюткой»: 774 электронные лампы, потребляющие энергию в размере 10 кВт, площадь - 3 м 2 . Соответственно, уменьшились и вычислительные возможности: 30 операций в секунду. Но для решения многих прикладных задач этого вполне было достаточно, поэтому М-3 выпускалась небольшой партией, 16 штук.

В 1960 году разработчики довели производительность машины до 1000 операций в секунду. Данную технологию заимствовали далее для электронно-вычислительных машин «Арагац», «Раздан», «Минск» (произведены в Ереване и в Минске). Эти проекты, реализованные параллельно с ведущими московскими и киевскими программами, показали серьёзные результаты уже позже, в период перехода ЭВМ на транзисторы.

«Стрела»

Под руководством Юрия Базилевского в Москве создается ЭВМ «Стрела». Первый образец устройства был завершен в 1953 году. «Стрела» (как и М-1) содержала память на электронно-лучевых трубках (МЭСМ использовала триггерные ячейки). Проект данной модели компьютера был настолько удачным, что на Московском заводе счетно-аналитических машин началось серийное производство этого типа продукции. Всего за три года было собрано семь экземпляров устройства: для пользования в лабораториях МГУ, а также в вычислительных центрах Академии наук СССР и ряда министерств.

ЭВМ «Стрела»

«Стрела» выполняла 2 тысячи операций в секунду. Но аппарат был весьма массивным и потреблял 150 кВт энергии. В конструкции использовалось 6,2 тысячи ламп и более 60 тысяч диодов. «Махина» занимала площадь в 300 м 2 .

БЭСМ

После перевода в Москву (в 1952 году), в Институт точной механики и вычислительной техники, академик Лебедев взялся за производство нового электронно-вычислительного устройства - Большой Электронной Счетной Машины, БЭСМ. Заметим, что принцип построения новой ЭВМ во многом был заимствован у ранней разработки Лебедева. Реализация данного проекта послужила началом самой успешной серии советских компьютеров.

БЭСМ осуществляла уже до 10 000 исчислений в секунду. При этом использовалось всего 5000 ламп, а потребляемая мощность составляла 35 кВт. БЭСМ являлась первой советской ЭВМ «широкого профиля» - её изначально предполагалось предоставлять учёным и инженерам для проведения расчетов различной сложности.

Модель БЭСМ-2 разрабатывалась для серийного производства. Число операций в секунду довели до 20 тысяч. После испытаний ЭЛТ и ртутных трубок, в данной модели оперативная память уже была на ферритовых сердечниках (основной тип ОЗУ на следующие 20 лет). Серийное производство, начавшееся на заводе имени Володарского в 1958 году, показало результаты в 67 единиц техники. БЭСМ-2 положила начало разработок военных компьютеров, руководивших системами ПВО: М-40 и М-50. В рамках этих модификаций был собран первый советский компьютер второго поколения - 5Э92б, и дальнейшая судьба серии БЭСМ уже оказалась связана с транзисторами.

Переход на транзисторы в советской кибернетике прошёл плавно. Особо уникальных разработок в этот период отечественного компьютеростроения не значится. В основном старые компьютерные системы переукомплектовывали под новые технологии.

Большая электронная счетная машина (БЭСМ)

Полностью полупроводниковая ЭВМ 5Э92б, спроектированная Лебедевым и Бурцевым, была создана под конкретные задачи противоракетной обороны. Она состояла из двух процессоров (вычислительного и контроллера периферийных устройств), имела систему самодиагностики и допускала «горячую» замену вычислительных транзисторных блоков. Производительность равнялась 500 тысячам операций в секунду для основного процессора и 37 тысяч – для контроллера. Столь высокая производительность дополнительного процессора была необходима, поскольку в связке с компьютерным блоком работали не только традиционные системы ввода-вывода, но и локаторы. ЭВМ занимала больше 100 м 2 .

Уже после 5Э92б разработчики снова возвратились к БЭСМ. Основная задача здесь - производство универсальных компьютеров на транзисторах. Так появились БЭСМ-3 (осталась в качестве макета) и БЭСМ-4. Последняя модель была выпущена в количестве 30 экземпляров. Вычислительная мощность БЭСМ-4 - 40 операций в секунду. Устройство в основном применялось как «лабораторный образец» для создания новых языков программирования, а также как прототип для конструирования более усовершенствованных моделей, таких как БЭСМ-6.

За всю историю советской кибернетики и вычислительной техники БЭСМ-6 считается самой прогрессивной. В 1965 году это компьютерное устройство было самым передовым по управляемости: развитая система самодиагностики, несколько режимов работы, обширные возможности по управлению удалёнными устройствами, возможность конвейерной обработки 14 процессорных команд, поддержка виртуальной памяти, кэш команд, чтение и запись данных. Показатели вычислительных способностей - до 1 млн операций в секунду. Выпуск данной модели продолжался вплоть до 1987 года, а использование - до 1995-го.

«Киев»

После того, как академик Лебедев отбыл в «Златоглавую», его лаборатория вместе с персоналом перешла под руководство академика Б.Г. Гнеденко (директор Института математики АН УССР). В этот период был взят курс на новые разработки. Так, зарождается идея создания компьютера на электронных лампах и с памятью на магнитных сердечниках. Он получил название «Киев». При его разработке впервые был применен принцип упрощенного программирования - адресный язык.

В 1956 году бывшую лебедевскую лабораторию, переименованную в Вычислительный центр, возглавил В.М. Глушков (сегодня данное отделение действует как Институт кибернетики имени академика Глушкова НАН Украины). Именно под началом Глушкова «Киев» удалось завершить и ввести в эксплуатацию. Машина остается на службе в Центре, второй образец компьютера «Киев» был приобретен и собран в Объединенном институте ядерных исследований (г. Дубна, Московская область).

Виктор Михайлович Глушков

Впервые в истории применения компьютерной техники, с помощью «Киева» удалось наладить дистанционное управление технологическим процессами металлургического комбината в Днепродзержинске. Заметим, что объект испытаний был удален от машины почти на 500 километров. «Киев» был вовлечен в ряд экспериментов по искусственному интеллекту, машинному распознаванию простых геометрических фигур, моделированию автоматов для распознавания печатных и письменных букв, автоматическому синтезу функциональных схем. Под руководством Глушкова на машине была апробирована одна из первых систем управления базами данных реляционного типа («Автодиректор»).

Хотя основу устройства составляли те же электронные лампы, у «Киева» уже было феррит-трансформаторное ЗУ с объемом в 512 слов. Также аппарат использовал блок внешней памяти на магнитных барабанах с общим объемом в девять тысяч слов. Вычислительная мощность этой модели компьютера в триста раз превышала возможности МЭСМ. Структура команд - аналогичная (трехадресная на 32 операции).

«Киев» имел собственные архитектурные особенности: в машине был реализован асинхронный принцип передачи управления между функциональными блоками; несколько блоков памяти (ферритовая оперативная память, внешняя память на магнитных барабанах); ввод и вывод чисел в десятичной системе счисления; пассивное запоминающее устройство с набором констант и подпрограмм элементарных функций; развитая система операций. Устройство производило групповые операции с модификацией адреса для повышения эффективности обработки сложных структур данных.

В 1955 году лаборатория Рамеева переехала в Пензу для разработки ещё одной ЭВМ под названием «Урал-1» - менее затратной, от того и массовой машины. Всего 1000 ламп с энергопотреблением в 10 кВт - это позволило существенно снизить производственные затраты. «Урал-1» выпускался до 1961-го года, всего было собрано 183 компьютера. Их устанавливали в вычислительных центрах и конструкторских бюро по всему миру. Например, в центре управления полётами космодрома «Байконур».

«Урал 2-4» также был на электронных лампах, но уже использовал оперативную память на ферритовых сердечниках, выполнял по несколько тысяч операций в секунду.

Московский государственный университет в это время проектирует собственный компьютер - «Сетунь». Он также пошел в массовое производство. Так, на Казанском заводе вычислительных машин было выпущено 46 таких компьютеров.

«Сетунь» - электронно-вычислительное устройство на троичной логике. В 1959 году эта ЭВМ со своими двумя десятками вакуумных ламп выполняла 4,5 тысячи операций в секунду и потребляла 2,5 кВт энергии. Для этого использовались феррито-диодные ячейки, которые советский инженер-электротехник Лев Гутенмахер опробовал ещё в 1954 году при разработке своей безламповой электронной вычислительной машины ЛЭМ-1.

«Сетуни» благополучно функционировали в различных учреждениях СССР. При этом создание локальных и глобальных компьютерных сетей требовало максимальную совместимость устройств (т.е. двоичная логика). Будущее компьютеров стояло за транзисторами, тогда как лампы оставались пережитком прошлого (как когда-то механические реле).

«Сетунь»

«Днепр»

В свое время Глушкова называли новатором, он не раз выдвигал смелые теории в области математики, кибернетики и вычислительной техники. Многие из его инноваций были поддержаны и внедрены в жизнь еще при жизни академика. Но всецело оценить тот весомый вклад, который сделал ученый в развитие этих направлений, помогло время. С именем В.М. Глушкова отечественная наука связывает исторические вехи перехода от кибернетики к информатике, а там - к информационным технологиям. Институт кибернетики АН УССР (до 1962 года - Вычислительный центр АН УССР), возглавляемый выдающимся ученым, специализировался на усовершенствовании компьютерной вычислительной техники, разработке прикладного и системного программного обеспечения, систем управления промышленным производством, а также сервисов обработки информации прочих сфер деятельности человека. В Институте были развернуты масштабные исследования по созданию информационных сетей, периферии и компонентов к ним. Можно с уверенностью заключить, что в те годы усилия ученых были направлены на «покорение» всех основных направлений развития информационных технологий. При этом любая научно обоснованная теория тут же воплощалась в жизнь и находила свое подтверждение на практике.

Следующий шаг в отечественном компьютеростроении связан с появлением электронно-вычислительного устройства «Днепр». Этот аппарат стал первым для всего Союза полупроводниковым управляющим компьютером общего назначения. Именно на базе «Днепра» появились попытки серийного производства компьютерно-вычислительной техники в СССР.

Эта машина была разработана и сконструирована всего за три года, что считалось очень незначительным временем для такого проектирования. В 1961 году произошло переоснащение многих советских промышленных предприятий, и управление производством легло на плечи ЭВМ. Глушков позже попытался объяснить, почему удалось так быстро собрать аппараты. Оказывается, еще на стадии разработок и проектирования ВЦ тесно сотрудничал с предприятиями, где предполагалось установить компьютеры. Анализировались особенности производства, этапность, а также выстраивались алгоритмы всего технологического процесса. Это позволило более точно запрограммировать машины, исходя из индивидуальных промышленных особенностей предприятия.

Было проведено несколько экспериментов с участием «Днепра» по удаленному управлению производствами разной специализации: сталелитейным, судостроительным, химическим. Заметим, что в этот же период западные конструкторы спроектировали аналогичный отечественному полупроводниковый компьютер универсального управления RW300. Благодаря проектированию и введению в эксплуатацию ЭВМ «Днепр» удалось не только сократить дистанцию в развитии компьютерной техники между нами и Западом, но и практически ступать «нога в ногу».

Компьютеру «Днепр» принадлежит еще одно достижение: устройство производилось и использовалось как основное производственно-вычислительное оборудование на протяжении десяти лет. Это (по меркам компьютерной техники) достаточно значительный срок, так как для большинства подобных разработок этап модернизации и усовершенствования исчислялся пятью-шестью годами. Эта модель компьютера была настолько надежной, что ей было доверено отслеживать экспериментальный космический полет шатлов «Союз-19» и «Аполлон», состоявшийся в 1972 году.

Впервые отечественное компьютеростроение вышло на экспорт. Также был разработан генеральный план строительства специализированного завода по производству вычислительной компьютерной техники - завод вычислительных и управляющих машин (ВУМ), расположенный в Киеве.

А в 1968 году небольшой серией была выпущена полупроводниковая ЭВМ «Днепр 2». Эти компьютеры имели более массовое назначение и использовались для выполнения различных вычислительных, производственных и планово-экономических задач. Но серийное производство «Днепр 2» было вскоре приостановлено.

«Днепр» отвечал следующим техническим характеристикам:

  • двухадресная система команд (88 команд);
  • двоичная система счисления;
  • 26 двоичных разрядов с фиксированной запятой;
  • оперативное запоминающее устройство на 512 слов (от одного до восьми блоков);
  • вычислительная мощность: 20 тысяч операций сложения (вычитания) в секунду, 4 тысячи операций умножения (деления) в тех же временных частотах;
  • размер аппарата: 35-40 м 2 ;
  • энергопотребление: 4 кВт.

«Промінь» и ЭВМ серии «МИР»

1963 год становится переломным для отечественного компьютеростроения. В этот год на заводе по производству вычислительных машин в Северодонецке производится машина «Промінь» (с укр. - луч). В этом аппарате впервые были использованы блоки памяти на металлизированных картах, ступенчатое микропрограммное управление и ряд других инноваций. Основным назначением этой модели компьютера считалось произведение инженерных расчетов различной сложности.

Украинский компьютер «Промінь» («Луч»)

За «Лучом» в серийное производство поступили компьютеры «Промінь-М» и «Промінь-2»:

  • объем ОЗУ: 140 слов;
  • ввод данных: с металлизированных перфокарт или штекерный ввод;
  • количество одномоментно запоминающихся команд: 100 (80 - основные и промежуточные, 20 - константы);
  • одноадресная система команд с 32 операциями;
  • вычислительная мощность – 1000 простейших задач в минуту, 100 вычислений по умножению в минуту.

Сразу за моделями серии «Промінь» появилось электронно-вычислительное устройство с микропрограммным выполнением простейших вычислительных функций - МИР (1965 г.). Заметим, что в 1967 году на мировой технической выставке в Лондоне машина МИР-1 получила достаточно высокую экспертную оценку. Американская компания IBM (ведущий мировой производитель-экспортер компьютерной техники в то время) даже приобрел несколько экземпляров.

МИР, МИР-1, а за ними вторая и третья модификации были поистине непревзойденным словом техники отечественного и мирового производства. МИР-2, например, успешно соревновалась с универсальными компьютерами обычной структуры, превосходящими ее по номинальному быстродействию и объему памяти во много раз. На этой машине впервые в практике отечественного компьютеростроения был реализован диалоговый режим работы, использующий дисплей со световым пером. Каждая из этих машин была шагом вперед на пути построения разумной машины.

С появлением этой серии устройств в работу был внедрен новый «машинный» язык программирования - «Аналитик». Алфавит для ввода состоял из заглавных русских и латинских букв, алгебраических знаков, знаков выделения целой и дробной части числа, цифры, показателей порядка числа, знаков препинания и так далее. При вводе информации в машину можно было пользоваться стандартными обозначениями элементарных функций. Русские слова, например, «заменить», «разрядность», «вычислить», «если», «то», «таблица» и другие использовались для описания вычислительного алгоритма и обозначения формы выходной информации. Любые десятичные значения можно было вводить в произвольной форме. Все необходимые параметры вывода программировались в период постановки задач. «Аналитик» позволял работать с целыми числами и массивами, редактировать введенные или уже запущенные программы, менять разрядность вычислений путем замены операций.

Символическая аббревиатура МИР была ни чем иным, как аббревиатура основного назначения устройства: «машина для инженерных расчетов». Эти устройства принято считать одними из первых персональных компьютеров.

Технические параметры МИР:

  • двоично-десятичная система счисления;
  • фиксированная и плавающая запятая;
  • произвольная разрядность и длина производимых расчетов (единственное ограничение накладывал объем памяти - 4096 символов);
  • вычислительная мощность: 1000-2000 операций в секунду.

Ввод данных осуществлялся за счет печатающего клавиатурного устройства (электрической машинки Zoemtron), идущего в комплекте. Соединение комплектующих происходило посредством микропрограммного принципа. В последствии благодаря этому принципу удалось усовершенствовать как сам язык программирования, так и прочие параметры устройства.

Супермашины серии «Эльбрус»

Выдающийся советский разработчик В.С. Бурцев (1927-2005 гг.) в истории отечественной кибернетики считается главным конструктором первых в СССР суперкомпьютеров и вычислительных комплексов для систем управления реального времени. Он разработал принцип селекции и оцифровки сигнала радиолокации. Это позволило произвести первую в мире автоматическую съемку данных с обзорной радиолокационной станции для наведения истребителей на воздушные цели. Успешно проведенные эксперименты по одновременному сопровождению нескольких целей легли в основу создания систем автонаведения на цель. Такие схемы строились на базе вычислительных устройств «Диана-1» и «Диана-2», разработанных под руководством Бурцева.

Далее группа ученых разработала принципы построения вычислительных средств противоракетной обороны (ПРО), что привело к появлению радиолокационных станций точного наведения. Это был отдельный высокоэффективный вычислительный комплекс, позволяющий с максимальной точностью производить автоматическое управление за сложными, разнесенными на большие расстояния объектами в режиме онлайн.

В 1972 году для нужд ввозимых комплексов противовоздушной обороны были созданы первые вычислительные трехпроцессорные машины 5Э261 и 5Э265, построенные по модульному принципу. Каждый модуль (процессор, память, устройство управления внешними связями) был полностью охвачен аппаратным контролем. Это позволило осуществлять автоматическое резервное копирование данных в случае, если происходили сбои или отказ в работе отдельных комплектующих. Вычислительный процесс при этом не прерывался. Производительность данного устройства была для тех времен рекордной - 1 млн операций в секунду при очень малых размерах (менее 2 м 3). Эти комплексы в системе С-300 по сей день используются на боевом дежурстве.

В 1969 году была поставлена задача разработать вычислительную систему с производительностью 100 млн операций в секунду. Так появляется проект многопроцессорного вычислительного комплекса «Эльбрус».

Разработка машин «запредельных» возможностей имела характерные отличия наряду с разработками универсальных электронно-вычислительных систем. Здесь предъявлялись максимальные требования как к архитектуре и элементной базе, так и к конструкции вычислительной системы.

В работе над «Эльбрусом» и рядом предшествующих им разработок ставились вопросы эффективной реализации отказоустойчивости и непрерывного функционирования системы. Поэтому у них появились такие особенности, как многопроцессорность и связанные с ней средства распараллеливания ветвей задачи.

В 1970 году началось плановое строительство комплекса.

В целом «Эльбрус» считается полностью оригинальной советской разработкой. В него были заложены такие архитектурные и конструкторские решения, благодаря которым производительность МВК практически линейно возрастала при увеличении числа процессоров. В 1980 году «Эльбрус-1» с общей производительностью 15 млн операций в секунду успешно прошел государственные испытания.

МВК «Эльбрус-1» стал первой в Советском Союзе ЭВМ, построенной на базе ТТЛ-микросхем. В программном отношении ее главное отличие - ориентация на языки высокого уровня. Для данного типа комплексов были также созданы собственная операционная система, файловая система и система программирования «Эль-76».

«Эльбрус-1» обеспечивала быстродействие от 1,5 до 10 млн операций в секунду, а «Эльбрус-2» - более 100 млн операций в секунду. Вторая ревизия машины (1985 год) представляла собой симметричный многопроцессорный вычислительный комплекс из десяти суперскалярных процессоров на матричных БИС, которые выпускались в Зеленограде.

Серийное производство машин такой сложности потребовало срочного развертывания систем автоматизации проектирования компьютеров, и эта задача была успешно решена под руководством Г.Г. Рябова.

«Эльбрусы» вообще несли в себе ряд революционных новшеств: суперскалярность процессорной обработки, симметричная многопроцессорная архитектура с общей памятью, реализация защищенного программирования с аппаратными типами данных - все эти возможности появились в отечественных машинах раньше, чем на Западе. Созданием единой операционной системы для многопроцессорных комплексов руководил Б.А. Бабаян, в свое время отвечавший за разработку системного программного обеспечения БЭСМ-6.

Работа над последней машиной семейства, «Эльбрус-3» с быстродействием до 1 млрд. операций в секунду и 16 процессорами, была закончена в 1991 году. Но система оказалась слишком громоздкой (за счет элементной базы). Тем более, что на тот момент появились более экономически выгодные решения строительства рабочих компьютерных станций.

Вместо заключения

Советская промышленность была в полной мере компьютеризирована, но большое количество слабо совместимых между собой проектов и серий привело к некоторым проблемам. Основное «но» касалось аппаратной несовместимости, что мешало созданию универсальных систем программирования: у всех серий были разные разрядности процессоров, наборы команд и даже размеры байтов. Да и массовым серийное производство советских компьютеров вряд ли можно назвать (поставки происходили исключительно в вычислительные центры и на производство). В то же время отрыв американских инженеров увеличивался. Так, в 60-х годах в Калифорнии уже уверенно выделялась Силиконовая долина, где вовсю создавались прогрессивные интегральные микросхемы.

В 1968 году была принята государственная директива «Ряд», по которой дальнейшее развитие кибернетики СССР направлялось по пути клонирования компьютеров IBM S/360. Сергей Лебедев, остававшийся на тот момент ведущим инженером-электротехником страны, отзывался о «Ряде» скептически. По его мнению, путь копирования по определению являлся дорогой отстающих. Но другого способа быстро «подтянуть» отрасль никто не видел. Был учреждён Научно-исследовательский центр электронной вычислительной техники в Москве, основной задачей которого стало выполнение программы «Ряд» - разработки унифицированной серии ЭВМ, подобных S/360.

Результат работы центра - появление в 1971 году компьютеров серии ЕС. Несмотря на сходство идеи с IBM S/360, прямого доступа к этим компьютерам советские разработчики не имели, поэтому проектирование отечественных машин начиналось с дизассемблирования программного обеспечения и логического построения архитектуры на основании алгоритмов её работы.

Развитие ЭВМ в СССР связано с именем Сергея Александровича Лебедева. В первые послевоенные годы Сергей Александрович Лебедев был директором Института электротехники АН Украины и по совместительству руководил лабораторией Института точной механики и вычислительной техники АН СССР. В этих научных организациях и была начата разработка первых действующих ЭВМ. Ученым было известно о создании в США машины ENIAC - первой в мире ЭВМ с электронными лампами в качестве элементной базы и автоматическим программным управлением. В 1948-49 годов в Англии появились вычислительные машины с хранимыми в памяти программами. Сведения о разработках на Западе поступали отрывочные, и, естественно, документация по первым ЭВМ была недоступна нашим специалистам.

Лебедев начал работу над своей машиной в конце 1948 года. Разработка велась под Киевом, в секретной лаборатории в местечке Феофания. Независимо от Джона фон Неймана Лебедев выдвинул, обосновал и реализовал в первой советской машине принципы построения ЭВМ с хранимой в памяти программой. Малая электронная счетная машина (МЭСМ) - так называлось детище Лебедева и сотрудников его лаборатории - занимала целое крыло двухэтажного здания и состояла из 6 тысяч электронных ламп. Ее проектирование, монтаж и отладка были выполнены в рекордно быстрый срок - за 2 года, силами всего лишь 12 научных сотрудников и 15 техников. Те, кто создавал первые вычислительные машины, были одержимы своей работой, и это вполне объяснимо. Несмотря на то, что МЭСМ по существу была лишь макетом действующей машины, она сразу нашла своих пользователей: к первой ЭВМ выстраивалась очередь киевских и московских математиков, задачи которых требовали использования быстродействующего вычислителя.

В своей первой машине Лебедев реализовал основополагающие принципы построения компьютеров, такие как:

  • · наличие арифметических устройств, памяти, устройств ввода/вывода и управления;
  • · кодирование и хранение программы в памяти, подобно числам;
  • · двоичная система счисления для кодирования чисел и команд;
  • · автоматическое выполнение вычислений на основе хранимой программы;
  • · наличие как арифметических, так и логических операций;
  • · иерархический принцип построения памяти;
  • · использование численных методов для реализации вычислений.

После Малой электронной машины была создана и первая Большая - БЭСМ-1, над которой С.И. Лебедев работал уже в Москве, в ИТМ и ВТ АН СССР. В 1953 году, после сдачи новой ЭВМ в эксплуатацию, ее создатель стал действительным членом АН СССР и директором института, который был в то время средоточием научной мысли в области вычислительной техники.

Одновременно с ИТМ и ВТ и конкурируя с ним, разработкой ЭВМ занималось недавно сформированное СКБ-245 со своей ЭВМ "Стрела". Между этими двумя организациями шла борьба за ресурсы, причем промышленное СКБ-245, находившееся в ведомстве Министерства машиностроения и приборостроения, часто получало приоритет по отношению к академическому ИТМиВТ. Только на "Стрелу", в частности, были выделены потенциалоскопы для построения запоминающего устройства, а разработчикам БЭСМ пришлось довольствоваться памятью на ртутных трубках, что серьезно повлияло на первоначальную производительность машины.

БЭСМ и "Стрела" составили парк созданного в 1955 году Вычислительного центра АН СССР, на который сразу легла очень большая нагрузка. Потребность в сверхбыстрых (по тем временам) расчетах испытывали математики, ученые-термоядерщики, первые разработчики ракетной техники и многие другие. Когда в 1954 году оперативная память БЭСМ была укомплектована усовершенствованной элементной базой, быстродействие машины (до 8 тысяч операций в секунду) оказалось на уровне лучших американских ЭВМ и самым высоким в Европе. Доклад Лебедева о БЭСМ в 1956 году на конференции в западногерманском городе Дармштадте произвел настоящий фурор, поскольку малоизвестная советская машина оказалась лучшей европейской ЭВМ. В 1958 году БЭСМ, теперь уже БЭСМ-2, в которой память на потенциалоскопах была заменена ЗУ на ферритовых сердечниках и расширен набор команд, была подготовлена к серийному производству на одном из заводов в Казани. Так начиналась история промышленного выпуска ЭВМ в Советском Союзе.

МЭСМ, "Стрела" и первые машины серии БЭСМ - это вычислительная техника первого поколения. Элементная база первых вычислительных машин - электронные лампы - определяла их большие габариты, значительное энергопотребление, низкую надежность и, как следствие, небольшие объемы производства и узкий круг пользователей, главным образом, из мира науки. В таких машинах практически не было средств совмещения операций выполняемой программы и распараллеливания работы различных устройств; команды выполнялись одна за другой, АЛУ простаивало в процессе обмена данными с внешними устройствами, набор которых был очень ограниченным. Объем оперативной памяти БЭСМ-2, например, составлял 2048 39-разрядных слов, в качестве внешней памяти использовались магнитные барабаны и накопители на магнитной ленте.

Более производительной была следующая разработка Лебедева - ЭВМ М-20, серийный выпуск которой начался в 1959 году. Число 20 в названии означает быстродействие - 20 тысяч операций в секунду, объем оперативной памяти в два раза превышал ОП БЭСМ, предусматривалось также некоторое совмещение выполняемых команд. В то время это была одна из самых мощных машин в мире, и на ней решалось большинство важнейших теоретических и прикладных задач науки и техники.

Очень трудоемким и малоэффективным был процесс общения человека с машиной первого поколения. Как правило, сам разработчик, написавший программу в машинных кодах, вводил ее в память ЭВМ с помощью перфокарт и затем вручную управлял ее выполнением. Электронный монстр на определенное время отдавался в безраздельное пользование программисту, и от уровня его мастерства, способности быстро находить и исправлять ошибки и умения ориентироваться за пультом ЭВМ во многом зависела эффективность решения вычислительной задачи. Ориентация на ручное управление определяла отсутствие каких бы то ни было возможностей буферизации программ.

Надо отметить, что первые шаги к созданию основ системного программного обеспечения Лебедев сделал в машине М20,где были реализованы возможности написания программ в мнемокодах. И это значительно расширило круг специалистов, которые смогли воспользоваться преимуществами вычислительной техники.

СССР создавал ядерное и термоядерное оружие, ракетную технику, систему ПВО. И вычислительная техника была для этих направлений жизненно необходима.

К сожалению, во второй половине восьмидесятых в массовое сознание накрепко вбили три мифа:

В СССР преследовали кибернетику.

Из-за преследований кибернетики не развивалась вычислительная техника.

Именно тогда СССР отстал от США и Запада.

Миф первый: В СССР преследовали кибернетику

Если считать преследованием несколько критических статей, в которых кибернетика справедливо критиковалась за излишне механистичный подход к управлению различными системами в независимости от их сложности. Согласитесь, что управление самолётом и управление государством — это две большие разницы. Претензии кибернетиков на создание искусственного интеллекта в то время вообще выглядели смехотворными. И дело не только в уровне техники и элементарной базе. Просто одна радиолампа или один транзистор, не равный нейрону, и два миллиарда транзисторов в процессоре «Tukwila» совсем не приближают его по возможностям к мозгу крысы.


Прошло 60 лет с появления кибернетики, дисциплина «искусственный интеллект» еще крайне далека до появления этого самого интеллекта. И это несмотря на поражающий прогресс «железа» и более полувека исследований и разработок. Критикуя кибернетику, они никоим образом не отрицали вычислительную технику. Вот отрывок из статьи «Кому служит кибернетика», опубликованной в журнале «Вопросы философии» в мае 1953 года: «…Применение подобных вычислительных машин имеет огромное значение для самых различных областей хозяйственного строительства. Проектирование промышленных предприятий, жилых высотных зданий, железнодорожных и пешеходных мостов и множества других сооружений нуждается в сложных математических расчетах, требующих затраты высококвалифицированного труда в течение многих месяцев. Вычислительные машины облегчают и сокращают этот труд до минимума. С таким же успехом эти машины используются и во всех сложных экономических и статистических вычислениях…»

Но пропаганда дала свои результаты, и сейчас глупые дети в независимости от фактического возраста могут поверить сказкам о «десяти тысячах расстрелянных кибернетиках и ста тысячах отправленных на Колыму». Нет таких сказок? Ну, значит будут.

Миф второй: вычислительная техника не развивалась

Глупые дети, слушая сказки о преследованиях кибернетики, даже не задумываются о том, что в тот период СССР создавал ядерное и термоядерное оружие, ракетную технику, систему ПВО. И вычислительная техника была для этих направлений жизненно необходима.

В октябре 1951 года под руководством академика Сергея Алексеевича Лебедева вступила в эксплуатацию первая универсальная перепрограммируемая советская ЭВМ — малая электронная счетная машина (МЭСМ).

На несколько месяцев позже вступила в эксплуатацию ЭВМ М-1, разработанная в лаборатории Энергетического института АН СССР.

Через год была создана БЭСМ. На тот момент она была одной из самых быстродействующих в мире.

В 1953 году в СССР начали серийно выпускать машину «Стрела».

В 1957 году в серию запустили машину «Урал-1». Всего было выпущено 183 машины.

В 1959 году была создана уникальная малая ЭВМ «Се́тунь» на основе троичной логики.

В июле 1961 года в СССР запустили в серию первую полупроводниковую универсальную управляющую машину «Днепр». До этого были только специализированные полупроводниковые машины. Еще до начала серийного выпуска с ней проводились эксперименты по управлению сложными технологическими процессами на металлургическом заводе имени Дзержинского.

В январе 1959 г. Килби была создана первая интегральная схема.

В 1962 году в США началось серийное производство ИС.

В том же 1962 году на Рижском заводе полупроводниковых приборов начали выпускать интегральную схему Р12-2 на германии, независимо разработанную Юрием Валентиновичем Осокиным.

В ноябре 1962 года перед академиком Глушковым была поставлена задача по созданию общегосударственной автоматизированной системы управления (ОГАС) экономикой. Был разработан экскизный проект «Единой Государственной сети вычислительных центров», который включал в себя около 100 центров в крупных промышленных городах и центрах экономических районов, объединенных широкополосными каналами связи. К этим крупным центрам были бы подключены еще 20000 более мелких. Распределенная база данных, возможность доступа к любой информации из любой точки системы. Ничего не напоминает? У американцев из сети ARPANET вырос интернет. А вот советский проект, к сожалению, не был реализован.

Но на тот момент разрыв в компьютерной технике между СССР и США сократился почти до нуля.

Самая быстрая машина второго поколения в СССР БЭСМ-6, созданная в 1967 году, имела производительность 1 миллион операций в секунду. На тот момент она была самой быстрой не только в СССР, но и в Европе.

Миф третий: СССР отстал в вычислительной технике еще в 50-х

Всего в 60-годах в СССР было разработано около 30 типов ЭВМ. Возникла необходимость унификации программного обеспечения и аппаратной совместимости при создании ЭВМ третьего поколения. В декабре 1967 года в Министерстве радиопромышленности состоялось совещание, на котором за основу для унификации взяли не советскую разработку, а IBM System/360. Предполагалось быстро скопировать IBM, и использовать большое количество уже готового программного обеспечения.

Сергей Алексеевич Лебедев заявил, что такое копирование приведёт к неизбежному отставанию. Но его отказались услышать.

Сам он, возглавляя Институт точной механики и вычислительной техники, отказался копировать американцев и приступил к разработке систем серии «Эльбрус». «Эльбрус-2» использовался в ядерных центрах, системе противоракетной обороны и других отраслях «оборонки».

А Научно-исследовательский центр электронной вычислительной техники и Научно-исследовательский институт электронных математических машин занялись созданием машин серии «Единая система» (ЕС), а по сути — копированием IBM System/360 и адаптированием софта. Хоть ЕС и имели свои ноу-хау, создавались на отечественной элементной базе, а заимствованный софт приходилось переписывать, но это было началом отставания отечественной вычислительной техники. Только к концу семидесятых машина серии ЕС достигла производительности в 1 млн. операций в секунду. Вполне возможно, если бы СССР не пошел по пути копирования и вкладывал бы больше средств в разработку и производство элементной базы, история вычислительной техники была бы совсем другой.