Формула силы натяжения нити. Вес тела

Движение системы тел

Динамика: движения системы связанных тел.

Проецирование сил нескольких объектов.

Действие второго закона Ньютона на тела, которые скреплены нитью

Если ты, дружок, позабыл, как силушку проецировать, советую в своей головушке освежить.

А для тех, кто все помнит, поехали!

Задача 1. На гладком столе лежат два связанных невесомой и нерастяжимой ниткой бруска с массой 200 г левого и массой правого 300 г. К первому приложена сила 0,1 Н, к левому - в противоположном направлении сила 0,6 Н. С каким ускорением движутся грузы?

Движение происходит только на оси X.

Т.к. к правому грузу приложена большая сила, движение данной системы будет направлено вправо, поэтому направим ось так же. Ускорение у обоих брусков будет направлено в одну сторону - сторону большей силы.

Сложим верхнее и нижнее уравнение. Во всех задачах, если нет каких-то условий сила натяжения у разных тел одинакова T₁ и Т ₂.

Выразим ускорение:

Ответ: 1 м/с²

Задача 2. Два бруска, связанные нерастяжимой нитью, находятся на горизонтальной плоскости. К ним приложены силы F₁ и F₂, составляющие с горизонтом углы α и β. Найти ускорение системы и силу натяжения нити. Коэффициенты трения брусков о плоскость одинаковы и равны μ. Силы F₁ и F₂ меньше силы тяжести брусков. Система движется влево.

Cистема движется влево, однако ось можно направить в любую сторону (дело лишь в знаках, можете поэксперментировать на досуге). Для разнообразия направим вправо, против движения всей системы, мы же любим минусы! Спроецируем силы на Ох (если с этим сложности - ).

По II з. Ньютона спроецируем силы обоих тел на Ох:

Сложим уравнения и выразим ускорение:

Выразим натяжение нити. Для этого приравняем ускорение из обоих уравнений системы:


Задача 3 . Через неподивжный блок перекинуты нить, к которой подвешены три одинаковых груза (два с одной стороны и один с другой) массой 5 кг каждый. Найти ускорение системы. Какой путь пройдут грузы за первые 4 с движения?

В данной задаче можно представить, что два левых груза скреплены вместе без нити, это избавит нас от проецирования взаимно равных сил.

Вычтем из первого уравнения второе:

Зная ускорение и то, что начальная скорость равна нулю, используем формулу пути для равноускоренного движения:

Ответ: 26,64 м

Задача 4. Два груза массами 4 кг и 6 кг соединены легкой нерастяжимой нитью. Коэффициенты трения между грузом и столом μ = 0,2. Определите ускорение, с которым будут двигаться грузы.

Запишем движение тел на оси, из Oy найдем N для силы трения (Fтр = μN):

(Если сложно понять, какие уравнения понадобятся для решения задачи, лучше запишите все)

Сложим два нижних уравнения для того, чтобы T сократилось:

Выразим ускорение:


Ответ: 2,8 м/с²

Задача 5. На наклонной поскости с углом наклона 45° лежит брускок массой 6 кг. Груз массой 4 кг присоединен к бруску при помощи нити и перекинут через блок. Определите натяжение нити, если коэффициент трения бруска о плоскость μ = 0,02. При каких значениях μ система будет в равновесии?

Ось направим произвольно и предположим, что правый груз перевешивает левый и поднимает его вверх по наклонной плоскости.



Из уравнения на ось Y выразим N для силы трения на ось Х (Fтр = μN):

Решим систему, взяв уравнение для левого тела по оси Х и для правого тела по оси Y:

Выразим ускорение, чтобы осталась одна неизвестная T, и найдем ее:

Система будет в равновесии. Это означает, что сумма всех сил, действующих на каждое из тел, будет равна нулю:


Получили отрицательный коэффициент трения, значит, движение системы мы выбрали неверно (ускорение, силу трения). Можно это проверить, подставив силу натяжения нити Т в любое уравнение и найдя ускорение. Но ничего страшного, значения остаются теми же по модулю, но противоположными по направлению.

Значит, правильное направление сил должно выглядить так, а коэффициент трения, при котором система будет в равновесии, равен 0,06.

Ответ: 0,06

Задача 6. На двух наклонных плоскостях находится по грузу массами 1 кг. Угол между горизонталью и плоскостями равен α = 45° и β = 30°. Коэффициент трения у обеих плоскостей μ = 0,1. Найдите ускорение, с которым движутся грузы, и силу натяжения нити. Каким должно быть отношение масс грузов, чтобы они находились в равновесии.

В данной задаче уже потребуются все уравнения на обе оси для каждого тела:

Найдем N в обоих случаях, подставим их в силу трения и запишем вместе уравнения для оси Х обоих тел:

Сложим уравнения и сократим на массу:

Выразим ускорение:

Подставив в любое уравнение найденное ускорение, найдем Т:

А теперь одолеем последний пункт и разберемся с соотношением масс. Сумма всех сил, действующих на любое из тел, равна нулю для того, чтобы система находилась в равновесии:

Сложим уравнения

Все, что с одной массой, перенесем в одну часть, все остальное - в другую часть уравнения:

Получили, что отношение масс должно быть таким:

Однако, если мы предположим, что система может двигаться в другом направлении, то есть правый груз будет перевешивать левый, направление ускорения и силы трения изменится. Уравнения останутся такими же, а вот знаки будут другими, и тогда отношение масс получится таким:

Тогда при соотношении масс от 1,08 до 1,88 система будет находиться в покое.

У многих может сложиться впечатление, что соотношение масс должно быть каким-то конкретным значением, а не промежутком. Это правда, если отстутвует сила трения. Чтобы уравновешивать силы тяжести под разными углами, найдется только один варинт, когда система находится в покое.

В данном же случае сила трения дает диапазон, в котором, пока сила трения не будет преодолена, движения не начнется.

Ответ: от 1,08 до 1,88

В физике, сила натяжения - это сила, действующая на веревку, шнур, кабель или похожий объект или группу объектов. Все, что натянуто, подвешено, поддерживается или качается на веревке, шнуре, кабеле и так далее, является объектом силы натяжения. Подобно всем силам, натяжение может ускорять объекты или становиться причиной их деформации. Умение рассчитывать силу натяжения является важным навыком не только для студентов физического факультета, но и для инженеров, архитекторов; те, кто строит устойчивые дома, должны знать, выдержит ли определенная веревка или кабель силу натяжения от веса объекта так, чтобы они не проседали и не разрушались. Приступайте к чтению статьи, чтобы научиться рассчитывать силу натяжения в некоторых физических системах.

Шаги

Определение силы натяжения на одной нити

  1. Определите силы на каждом из концов нити. Сила натяжения данной нити, веревки является результатом сил, натягивающих веревку с каждого конца. Напоминаем, сила = масса × ускорение . Предполагая, что веревка натянута туго, любое изменение ускорения или массы объекта, подвешенного на веревке, приведет к изменению силы натяжения в самой веревке. Не забывайте о постоянном ускорении силы тяжести - даже если система находится в покое, ее составляющие являются объектами действия силы тяжести. Мы можем предположить, что сила натяжения данной веревки это T = (m × g) + (m × a), где «g» - это ускорение силы тяжести любого из объектов, поддерживаемых веревкой, и «а» - это любое другое ускорение, действующее на объекты.

    • Для решения множества физических задач, мы предполагаем идеальную веревку - другими словами, наша веревка тонкая, не обладает массой и не может растягиваться или рваться.
    • Для примера, давайте рассмотрим систему, в которой груз подвешен к деревянной балке с помощью одной веревки (смотрите на изображение). Ни сам груз, ни веревка не двигаются - система находится в покое. Вследствие этого, нам известно, чтобы груз находился в равновесии, сила натяжения должна быть равна силе тяжести. Другими словами, Сила натяжения (F t) = Сила тяжести (F g) = m × g.
      • Предположим, что груз имеет массу 10 кг, следовательно, сила натяжения равна 10 кг × 9,8 м/с 2 = 98 Ньютонов.
  2. Учитывайте ускорение. Сила тяжести - не единственная сила, что может влиять на силу натяжения веревки - такое же действие производит любая сила, приложенная к объекту на веревке с ускорением. Если, к примеру, подвешенный на веревке или кабеле объект ускоряется под действием силы, то сила ускорения (масса × ускорение) добавляется к силе натяжения, образованной весом этого объекта.

    • Предположим, что в нашем примере на веревку подвешен груз 10 кг, и вместо того, чтобы быть прикрепленным к деревянной балке, его тянут вверх с ускорением 1 м/с 2 . В этом случае, нам необходимо учесть ускорение груза, также как и ускорение силы тяжести, следующим образом:
      • F t = F g + m × a
      • F t = 98 + 10 кг × 1 м/с 2
      • F t = 108 Ньютонов.
  3. Учитывайте угловое ускорение. Объект на веревке, вращающийся вокруг точки, которая считается центром (как маятник), оказывает натяжение на веревку посредством центробежной силы. Центробежная сила - дополнительная сила натяжения, которую вызывает веревка, «толкая» ее внутрь так, чтобы груз продолжал двигаться по дуге, а не по прямой. Чем быстрее движется объект, тем больше центробежная сила. Центробежная сила (F c) равна m × v 2 /r где «m»– это масса, «v» - это скорость, и «r» - радиус окружности, по которой движется груз.

    • Так как направление и значение центробежной силы меняются в зависимости от того, как объект движется и меняет свою скорость, то полное натяжение веревки всегда параллельно веревке в центральной точке. Запомните, что сила притяжения постоянно действует на объект и тянет его вниз. Так что, если объект раскачивается вертикально, полное натяжение сильнее всего в нижней точке дуги (для маятника это называется точкой равновесия), когда объект достигает максимальной скорости, и слабее всего в верхней точке дуги, когда объект замедляется.
    • Давайте предположим, что в нашем примере объект больше не ускоряется вверх, а раскачивается как маятник. Пусть наша веревка будет длиной 1,5 м, а наш груз движется со скоростью 2 м/с, при прохождении через нижнюю точку размаха. Если нам нужно рассчитать силу натяжения в нижней точке дуги, когда она наибольшая, то сначала надо выяснить равное ли давление силы тяжести испытывает груз в этой точке, как и при состоянии покоя - 98 Ньютонов. Чтобы найти дополнительную центробежную силу, нам необходимо решить следующее:
      • F c = m × v 2 /r
      • F c = 10 × 2 2 /1.5
      • F c =10 × 2,67 = 26,7 Ньютонов.
      • Таким образом, полное натяжение будет 98 + 26,7 = 124,7 Ньютона.
  4. Учтите, что сила натяжения благодаря силе тяжести меняется по мере прохождения груза по дуге. Как было отмечено выше, направление и величина центробежной силы меняются по мере того, как качается объект. В любом случае, хотя сила тяжести и остается постоянной, результирующая сила натяжения в результате тяжести тоже меняется. Когда качающийся объект находится не в нижней точке дуги (точке равновесия), сила тяжести тянет его вниз, но сила натяжения тянет его вверх под углом. По этой причине сила натяжения должна противодействовать части силы тяжести, а не всей ее полноте.

    • Разделение силы гравитации на два вектора сможет помочь вам визуально изобразить это состояние. В любой точке дуги вертикально раскачивающегося объекта, веревка составляет угол «θ» с линией, проходящей через точку равновесия и центр вращения. Как только маятник начинает раскачиваться, сила гравитации (m × g) разбивается на 2 вектора - mgsin(θ), действуя по касательной к дуге в направлении точки равновесия и mgcos(θ), действуя параллельно силе натяжения, но в противоположном направлении. Натяжение может только противостоять mgcos(θ) - силе, направленной против нее - не всей силе тяготения (исключая точку равновесия, где все силы одинаковы).
    • Давайте предположим, что, когда маятник отклоняется на угол 15 градусов от вертикали, он движется со скоростью 1,5 м/с. Мы найдем силу натяжения следующими действиями:
      • Отношение силы натяжения к силе тяготения (T g) = 98cos(15) = 98(0,96) = 94,08 Ньютона
      • Центробежная сила (F c) = 10 × 1,5 2 /1,5 = 10 × 1,5 = 15 Ньютонов
      • Полное натяжение = T g + F c = 94,08 + 15 = 109,08 Ньютонов.
  5. Рассчитайте трение. Любой объект, который тянется веревкой и испытывает силу «торможения» от трения другого объекта (или жидкости), передает это воздействие натяжению в веревке. Сила трения между двумя объектами рассчитывается также, как и в любой другой ситуации - по следующему уравнению: Сила трения (обычно пишется как F r) = (mu)N, где mu - это коэффициент силы трения между объектами и N - обычная сила взаимодействия между объектами, или та сила, с которой они давят друг на друга. Отметим, что трение покоя - это трение, которое возникает в результате попытки привести объект, находящийся в покое, в движение - отличается от трения движения - трения, возникающего в результате попытки заставить движущийся объект продолжать движение.

    • Давайте предположим, что наш груз в 10 кг больше не раскачивается, теперь его буксируют по горизонтальной плоскости с помощью веревки. Предположим, что коэффициент трения движения земли равен 0,5 и наш груз движется с постоянной скоростью, но нам нужно придать ему ускорение 1м/с 2 . Эта проблема представляет два важных изменения - первое, нам больше не нужно рассчитывать силу натяжения по отношению к силе тяжести, так как наша веревка не удерживает груз на весу. Второе, нам придется рассчитать натяжение, обусловленное трением, также как и вызванное ускорением массы груза. Нам нужно решить следующее:
      • Обычная сила (N) = 10 кг & × 9,8 (ускорение силы тяжести) = 98 N
      • Сила трения движения (F r) = 0,5 × 98 N = 49 Ньютонов
      • Сила ускорения (F a) = 10 kg × 1 м/с 2 = 10 Ньютонов
      • Общее натяжение = F r + F a = 49 + 10 = 59 Ньютонов.

    Расчет силы натяжения на нескольких нитях

    1. Поднимите вертикальные параллельные грузы с помощью блока. Блоки - это простые механизмы, состоящие из подвесного диска, что позволяет менять направление силы натяжения веревки. В простой конфигурации блока, веревка или кабель идет от подвешенного груза вверх к блоку, затем вниз к другому грузу, создавая тем самым два участка веревки или кабеля. В любом случае натяжение в каждом из участков будет одинаковым, даже если оба конца будут натягиваться силами разных величин. Для системы двух масс, подвешенных вертикально в блоке, сила натяжения равна 2g(m 1)(m 2)/(m 2 +m 1), где «g» - ускорение силы тяжести, «m 1 » - масса первого объекта, «m 2 »– масса второго объекта.

      • Отметим следующее, физические задачи предполагают, что блоки идеальны - не имеют массы, трения, они не ломаются, не деформируются и не отделяются от веревки, которая их поддерживает.
      • Давайте предположим, что у нас есть два вертикально подвешенных на параллельных концах веревки груза. У одного груза масса 10 кг, а у второго - 5 кг. В этом случае, нам необходимо рассчитать следующее:
        • T = 2g(m 1)(m 2)/(m 2 +m 1)
        • T = 2(9,8)(10)(5)/(5 + 10)
        • T = 19,6(50)/(15)
        • T = 980/15
        • T = 65,33 Ньютонов.
      • Отметим, что, так как один груз тяжелее, все остальные элементы равны, эта система начнет ускоряться, следовательно, груз 10 кг будет двигаться вниз, заставляя второй груз идти вверх.
    2. Подвесьте грузы, используя блоки с не параллельными вертикальными нитями. Блоки зачастую используются для того, чтобы направлять силу натяжения в направлении, отличном от направления вниз или вверх. Если, к примеру, груз подвешен вертикально к одному концу веревки, а другой конец держит груз в диагональной плоскости, то непараллельная система блоков принимает форму треугольника с углами в точках с первых грузом, вторым и самим блоком. В этом случае натяжение в веревке зависит как от силы тяжести, так и от составляющей силы натяжения, которая параллельна к диагональной части веревки.

      • Давайте предположим, что у нас есть система с грузом в 10 кг (m 1), подвешенным вертикально, соединенный с грузом в 5 кг(m 2), расположенным на наклонной плоскости в 60 градусов (считается, что этот уклон не дает трения). Чтобы найти натяжение в веревке, самым легким путем будет сначала составить уравнения для сил, ускоряющих грузы. Далее действуем так:
        • Подвешенный груз тяжелее, здесь нет трения, так что мы знаем, что он ускоряется вниз. Натяжение в веревке тянет вверх, так что он ускоряется по отношению к равнодействующей силе F = m 1 (g) - T, или 10(9,8) - T = 98 - T.
        • Мы знаем, что груз на наклонной плоскости ускоряется вверх. Так как она не имеет трения, мы знаем, что натяжение тянет груз вверх по плоскости, а вниз его тянет только свой собственный вес. Составляющая силы, тянущей вниз по наклонной, вычисляется как mgsin(θ), так что в нашем случае мы можем заключить, что он ускоряется по отношению к равнодействующей силе F = T - m 2 (g)sin(60) = T - 5(9,8)(0,87) = T - 42,14.
        • Если мы приравняем эти два уравнения, то получится 98 - T = T - 42,14. Находим Т и получаем 2T = 140,14, или T = 70,07 Ньютонов.
    3. Используйте несколько нитей, чтобы подвесить объект. В заключение, давайте представим, что объект подвешен на «Y-образной» системе веревок - две веревки закреплены на потолке и встречаются в центральной точке, из которой идет третья веревка с грузом. Сила натяжения третьей веревки очевидна - простое натяжение в результате действия силы тяжести или m(g). Натяжения на двух остальных веревках различаются и должны составлять в сумме силу, равную силе тяжести вверх в вертикальном положении и равны нулю в обоих горизонтальных направлениях, если предположить, что система находится в состоянии покоя. Натяжение в веревке зависит от массы подвешенных грузов и от угла, на который отклоняется от потолка каждая из веревок.

      • Давайте предположим, что в нашей Y-образной системе нижний груз имеет массу 10 кг и подвешен на двух веревках, угол одной из которых составляет с потолком 30 градусов, а угол второй - 60 градусов. Если нам нужно найти натяжение в каждой из веревок, нам понадобится рассчитать горизонтальную и вертикальную составляющие натяжения. Чтобы найти T 1 (натяжение в той веревке, наклон которой 30 градусов) и T 2 (натяжение в той веревке, наклон которой 60 градусов), нужно решить:
        • Согласно законам тригонометрии, отношение между T = m(g) и T 1 и T 2 равно косинусу угла между каждой из веревок и потолком. Для T 1 , cos(30) = 0,87, как для T 2 , cos(60) = 0,5
        • Умножьте натяжение в нижней веревке (T=mg) на косинус каждого угла, чтобы найти T 1 и T 2 .
        • T 1 = 0,87 × m(g) = 0,87 × 10(9,8) = 85,26 Ньютонов.
        • T 2 =0,5 × m(g) = 0,5 × 10(9,8) = 49 Ньютонов.

В технике встречается еще один вид растянутых элементов, при определении прочности которых важное значение имеет собственный вес. Это — так называемые гибкие нити. Таким термином обозначаются гибкие элементы в линиях электропередач, в канатных дорогах, в висячих мостах и других сооружениях.

Пусть (Рис.1) имеется гибкая нить постоянного сечения, нагруженная собственным весом и подвешенная в двух точках, находящихся на разных уровнях. Под действием собственного веса нить провисает по некоторой кривой АОВ.

Горизонтальная проекция расстояния между опорами (точками ее закрепления), обозначаемая , носит название пролета.

Нить имеет постоянное сечение, следовательно, вес ее распределен равномерно по ее длине. Обычно провисание нити невелико по сравнению с ее пролетом, и длина кривой АОВ мало отличается (не более чем на 10%) от длины хорды АВ . В этом случае с достаточной степенью точности можно считать, что вес нити равно- мерно распределен не по ее длине, а по длине ее проекции на горизонтальную ось, т. е. вдоль пролета l .


Рис.1. Расчетная схема гибкой нити.

Эту категорию гибких нитей мы и рассмотрим. Примем, что интенсивность нагрузки, равномерно распределенной по пролету нити, равна q . Эта нагрузка, имеющая размерность сила/длина , может быть не только собственным весом нити, приходящимся на единицу длины пролета, но и весом льда или любой другой нагрузкой, также равномерно распределенной. Сделанное допущение о законе распределения нагрузки значительно облегчает расчет, но делает его вместе с тем приближенным; если при точном решении (нагрузка распределена вдоль кривой) кривой провисания будет цепная линия, то в приближенном решении кривая провисания оказывается квадратной параболой.

Начало координат выберем в самой низшей точке провисания нити О , положение которой, нам пока неизвестное, очевидно, зависит от величины нагрузки q , от соотношения между длиной нити по кривой и длиной пролета, а также от относительного положения опорных точек. В точке О касательная к кривой провисания нити, очевидно, горизонтальна. По этой касательной направим вправо ось .

Вырежем двумя сечениями — в начале координат и на расстоянии от начала координат (сечение m — n ) — часть длины нити. Так как нить предположена гибкой, т. е. способной сопротивляться лишь растяжению, то действие отброшенной части на оставшуюся возможно только в виде силы, направленной по касательной к кривой провисания нити в месте разреза; иное направление этой силы невозможно.

На рис.2 представлена вырезанная часть нити с действующими на нее силами. Равномерно распределенная нагрузка интенсивностью q направлена вертикально вниз. Воздействие левой отброшенной части (горизонтальная сила Н ) направлено, ввиду того, что нить работает на растяжение, влево. Действие правой отброшенной части, сила Т , направлено вправо по касательной к кривой провисания нити в этой точке.

Cоставим уравнение равновесия вырезанного участка нити. Возьмем сумму моментов всех сил относительно точки приложения силы Т и приравняем ее нулю. При этом учтем, опираясь на приведенное в начале допущение, что равнодействующая распределенной нагрузки интенсивностью q будет , и что она приложена посредине отрезка . Тогда

Рис.2. Фрагмент вырезанной части гибкой нити

,

Отсюда следует, что кривая провисания нити является параболой. Когда обе точки подвеса нити находятся на одном уровне, то Величина в данном случае будет так называемой стрелой провисания. Ее легко определить. Так как в этом случае, ввиду симметрии, низшая точка нити находится посредине пролита, то ; подставляя в уравнение (1) значения и получаем:

Величина Н называется горизонтальным натяжением нити.

и натяжение H , то по формуле (2) найдем стрелу провисания . При заданных и натяжение Н определяется формулой (3). Связь этих величин с длиной нити по кривой провисания устанавливается при помощи известной из математики приближенной формулы)

Составим еще одно условие равновесия вырезанной части нити, а именно, приравняем нулю сумму проекций всех сил на ось :

Из этого уравнения найдем силу Т — натяжение в произвольной точке

Откуда следует, что сила Т увеличивается от низшей точки нити к опорам и будет наибольшей в точках подвеса — там, где касательная к кривой провисания нити составляет наибольший угол с горизонталью. При малом провисании нити этот угол не достигает больших значений, поэтому с достаточной для практики степенью точности можно считать, что усилие в нити постоянно и равно ее натяжению Н . На эту величину обычно и ведется расчет прочности нити. Если все же требуется вести расчет на наибольшую силу у точек подвеса, то для симметричной нити ее величину определим следующим путем. Вертикальные составляющие реакций опор равны между собой и равны половине суммарной нагрузки на нить, т. е. . Горизонтальные составляющие равны силе Н , определяемой по формуле (3). Полные реакции опор получатся как геометрические суммы этих составляющих:

Условие прочности для гибкой нити, если через F обозначена площадь сечения, имеет вид:

Заменив натяжение Н его значением по формуле (3), получим:

Из этой формулы при заданных , , и можно определить необходимую стрелу провисания . Решение при этом упростится, если в включен лишь собственный вес; тогда , где — вес единицы объема материала нити, и

т. е. величина F не войдет в расчет.

Если точки подвеса нити находятся на разных уровнях, то, подставляя в уравнение (1) значения и , находим и :

Отсюда из второго выражения определяем натяжение

а деля первое на второе, находим:

Имея в виду, что , получаем:

Подставив это значение в формулу определенного натяжения Н , окончательно определяем:

Два знака в знаменателе указывают на то, что могут быть две основные формы провисания нити. Первая форма при меньшем значении Н (знак плюс перед вторым корнем) дает нам вершину параболы между опорами нити. При большем натяжении Н (знак минус перед вторым корнем) вершина параболы расположится левее опоры А (Рис.1). Получаем вторую форму кривой. Возможна и третья (промежуточная между двумя основными) форма провисания, соответствующая условию ; тогда начало координат совмещается с точкой А . Та или иная форма будет получена в зависимости от соотношений между длиной нити по кривой провисания АОВ (Рис.1) и длиной хорды АВ .

Если при подвеске нити на разных уровнях неизвестны стрелы провисания и , но известно натяжение Н , то легко получить значения расстояний а и b и стрел провисания, и . Разность h уровней подвески равна:

Подставим в это выражение значения и , и преобразуем его, имея в виду, что :

а так как то

Следует иметь в виду, что при будет иметь место первая форма провисания нити, при — вторая форма провисания и при — третья форма. Подставляя значения и в выражения для стрел провисания и , получаем величины и :

Теперь выясним, что произойдет с симметричной нитью, перекрывающей пролет , если после подвешивания ее при температуре и интенсивности нагрузки температура нити повысится до а нагрузка увеличится до интенсивности (например, из-за ее обледенения). При этом предположим, что в первом состоянии задано или натяжение , или стрела провисания (Зная одну из этих двух величин, всегда можно определить другую.)

При подсчете деформации нити, являющейся по сравнению с длиной нити малой величиной, сделаем два допущения: длина нити "равна ее пролету, а натяжение постоянно и равно Н . При пологих нитях эти допущения дают небольшую погрешность.

Задача 10048

Блок, имеющий форму диска массой m = 0,4 кг, вращается под действием силы натяжения нити, к концам которой подвешены грузы массами m 1 = 0,3 кг и m 2 = 0,7 кг. Определить силы натяжения Т 1 и T 2 нити по обе стороны блока.

Задача 13144

На однородный сплошной цилиндрический вал радиусом R = 5 см и массой М = 10 кг намотана легкая нить, к концу которой прикреплен груз массой m = 1 кг. Определить: 1) зависимость s(t), согласно которой движется груз; 2) силу натяжения нити Т; 3) зависимость φ(t), согласно которой вращается вал; 4) угловую скорость ω вала через t = 1 с после начала движения; 5) тангенциальное (а τ) и нормальное (а n) ускорения точек, находящихся на поверхности вала.

Задача 13146

Через неподвижный блок в виде однородного сплошного цилиндра массой m = 0,2 кг перекинута невесомая нить, к концам которой прикреплены тела массами m 1 = 0,35 кг и m 2 = 0,55 кг. Пренебрегая трением в оси блока, определите: 1) ускорение груза; 2) отношение T 2 /T 1 сил натяжения нити.

Задача 40602

На полый тонкостенный цилиндр массы m намотана нить (тонкая и невесомая). Свободный конец ее прикреплен к потолку лифта, движущегося вниз с ускорением а л. Цилиндр предоставлен сам себе. Найти ускорение цилиндра относительно лифта и силу натяжения нити. Во время движения нить считать вертикальной.

Задача 40850

Груз массой 200 г вращают на нитке длинной 40 см в горизонтальной плоскости. Чему равна сила натяжения нити,если груз делает 36 оборотов за одну минуту.

Задача 13122

В воздухе на шелковой нити подвешен заряженный шарик массой m = 0,4 г. Снизу подносят к нему на расстояние r = 2 см разноименный и равный по величине заряд q. В результате этого сила натяжения нити Т увеличивается в n = 2,0 раза. Найти величину заряда q.

Задача 15612

Найти отношение модуля силы натяжения нити математического маятника в крайнем положении с модулем силы натяжения нити конического маятника; длины нитей, массы грузиков и углы отклонения маятников одинаковы.

Задача 16577

Два маленьких одинаковых шарика массой 1 мкг каждый подвешены на нитях одинаковой длины и соприкасаются. Когда шарики зарядили, они разошлись на расстояние 1 см, а сила натяжения нити стала равной 20 нН. Найти заряды шариков.

Задача 19285

Установить закон, согласно которому меняется со временем сила натяжения F нити математического маятника. Маятник колеблется по закону α = α max cosωt, масса его m, длина l .

Задача 19885

На рисунке изображены заряженная бесконечная плоскость с поверхностной плоскостью заряда σ = 40 мкКл/м 2 и одноименно заряженный шарик с массой m = l г и зарядом q = 2,56 нКл. Сила натяжения нити, на которой висит шарик, равна...

популярное определение

Сила - это действие, которое может изменить состояние покоя или движения тела ; следовательно, он может ускорять или изменять скорость, направление или направление движения данного тела. Напротив, напряженность - это состояние тела, подверженного действию противодействующих сил, которые его притягивают.

Она известна как сила растяжения, которая при воздействии на упругое тело создает напряжение; Эта последняя концепция имеет различные определения, которые зависят от отрасли знаний, из которой она анализируется.

Канаты, например, позволяют передавать силы от одного тела к другому. Когда две равные и противоположные силы применяются на концах веревки, веревка становится натянутой. Короче говоря, силы натяжения - это каждая из этих сил, которая поддерживает канат без разрушения .

Физика и инженерия говорят о механическом напряжении, чтобы обозначить силу на единицу площади в окружении материальной точки на поверхности тела. Механическое напряжение может быть выражено в единицах силы, деленных на единицы площади.

Напряжение также является физической величиной, которая приводит электроны через проводник в замкнутую электрическую цепь, которая вызывает протекание электрического тока. В этом случае напряжение можно назвать напряжением или разностью потенциалов .

С другой стороны, поверхностное натяжение жидкости - это количество энергии, необходимое для уменьшения площади ее поверхности на единицу площади. Следовательно, жидкость оказывает сопротивление, увеличивая ее поверхность.

Как найти силу натяжения

Зная, что сила натяжения - это сила , с которой натягивается линия или струна, можно найти натяжение в ситуации статического типа, если известны углы линий. Например, если нагрузка находится на склоне, а линия, параллельная последнему, препятствует перемещению груза вниз, натяжение разрешается, зная, что сумма горизонтальных и вертикальных составляющих задействованных сил должна давать ноль.

Первый шаг для выполнения этого расчета - нарисовать склон и поместить на него блок массы M. Справа увеличивается наклон, и в одной точке он встречает стену, от которой линия проходит параллельно первому. и связать блок, удерживая его на месте и создавая натяжение T. Далее вы должны отождествить угол наклона с греческой буквой, которая может быть «альфа», а силу, которую он оказывает на блок, с буквой N, поскольку речь идет о нормальной силе .

Из блока вектор должен быть нарисован перпендикулярно наклону и вверх, чтобы представить нормальную силу, и один вниз (параллельно оси y ), чтобы отобразить силу тяжести. Затем вы начинаете с формул.

Чтобы найти силу, F = M используется. g , где g - это его постоянное ускорение (в случае силы тяжести это значение равно 9, 8 м / с ^ 2 ). Единицей, используемой для результата, является ньютон, который обозначается буквой N. В случае нормальной силы его необходимо разложить по вертикальным и горизонтальным векторам, используя угол, который он образует с осью x : для вычисления вектора вверх g равен косинусу угла, а для вектора в направлении слева, к лоно этого.

Наконец, левая составляющая нормальной силы должна быть приравнена к правой стороне напряжения T, наконец, разрешив напряжение.

  • библиотековедение

    Чтобы хорошо знать термин библиотечное дело, которое нас сейчас занимает, необходимо начать с выяснения его этимологического происхождения. В этом случае мы можем сказать, что это слово происходит от греческого, поскольку оно образовано суммой нескольких элементов этого языка: - Существительное «библион», которое можно перевести как «книга». - Слово «техе», которое является синонимом слова «ящик» или «место, где оно хранится». -Суффикс "-logía", который используется для обозначения "науки, которая изучает". Это известно как библиотечное дело в дисциплине, сфокусированной на

    определение

  • taxismo

    Таксизм не является термином, принятым Королевской испанской академией (RAE) в своем словаре. Понятие используется со ссылкой на направленное движение, которое реализует живое существо, чтобы ответить на стимул, который воспринимает. Такси может быть отрицательным (когда живое существо удаляется от источника стимула) или положительным (живое существо приближается к тому, что генерирует рассматриваемый стимул). Чтобы органи

    определение

  • расширение

    Расширение, от латинского expansĭo , является действием и эффектом расширения или расширения (распространение, распространение, развертывание, развертывание, придание большей амплитуды или создание чего-либо занимающего больше места). Расширение может быть территориальным ростом нации или империи от завоевания и аннексии новых земель. Например: «Американская экспансия девятнадцатого века была очень важной и затронула Мекси

    определение